Article | . 2018 Vol. 30, Issue. 1
Tolerance of Pichia farinosa KCTC27753 Isolated from Nuruk to Fermentation Inhibitors



Department of Food Science and Biotechnology, Kangwon National University1




2018.. 50:56


PDF XML




The production of bioethanol from lignocellulosic biomass using yeast will depend, at least in part, on the yeast strain’s tolerance to fermentation inhibitors. Pichia farinosa KCTC27753, which was isolated from nuruk in our laboratory, grows well at 46°C and pH 3.0. To explore the fermentation-inhibitor tolerance profile of this stress-tolerant strain, a cocktail composed of fermentation inhibitors released during biomass pretreatment (e.g., furfurals, phenolic compounds, and weak acids) was tested using a plate growth assay of P. farinosa KCTC27753 and control (KCTC27412, CBS7064) strains. The results of this assay showed that P. farinosa KCTC27753 had relatively higher growth rates than other strains in the presence of HMF, vanillin, and phenolic compounds. During fermentation, KCTC27753 produced 8.54 ± 0.51 g ethanol from 20 g glucose in the presence of an inhibitor cocktail (1.6%). By contrast, CBS7064 did not grow under the test conditions and strain KCTC27412 produced 6.78 ± 0.48 g ethanol from 19.6 g glucose.



1. Almeida, J., Modig, T., Petersson, A., Hahn, H. B., Lidén, G., Gorwa, G. M. F. (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82:340-349.  

2. Arantes, V., Saddler, J. N. (2011) Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnol Biofuels 4:3-10.  

3. Cho, W. S., Chung, Y. H., Kim, B. K., Suh, S. J., Koh, W. S., Choe, S. H. (2007) Cellulosic ethanol as renewable alternative fuel. J Plant Biotechnol 34:111-118.  

4. Eyini, M., Rajapandy, V., Parani, K., Lee, M. W. (2004) Effect of different pretreatment methods on the bioconversion of rice bran into ethanol. Korean Soc Mycol 32:170-172.  

5. Galbe, M., Zacchi, G. (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv Biochem Eng Biotechnol 1081:41-65.  

6. Goshima, T., Tsuji, M., Inoue, H., Yano, S., Hoshino, T., Matsushika, A. (2013) Bioethanol production from lignocellulosic biomass by a novel Kluyveromyces marxianus strain. Biosci Biotechnol Biochem 77:1505-1510.  

7. Jeong, T. S., Oh, K. K. (2009) Behaviors of glucose decomposition during dilute-acid hydrolysis lignocellulosic biomass. Korean Soc Biotechnol Bioeng J 24:267-272.  

8. Ko, J. J., Yun, S. L., Kang, S. W., Kim, S. K. (2008) A review of thermochemical pretreatment in lignocellulosic bioethanol production. Korea Organic Res Recy Assoc 16:79-88.  

9. Koppram, R., Albers, E., Olsson, L. (2012) Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass. Biotechnol Biofuels 5:32-38.  

10. Kwon, H. J., Kim, M. D. (2016) Isolation of stress-tolerant from nuruk. Microbiol Biotechnol Lett 44:349-354.  

11. Larsson, S., Palmqvist, E., Hahn, H. B., Tengborg, C., Stenberg, K., Zacchi, G., Nilvebrant, N. O. (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb Technol 24:151-159.  

12. Larsson, S., Reimann, A., Nilvebrant, N. O., Jönsson, L. J. (1999) Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl Biochem Biotechnol 77:91-103.  

13. Lee, J. S., Park, E. H., Kim, J. W., Yeo, S. H., Kim, M. D. (2013) Growth and fermentation characteristics of Saccharomyces cerevisiae NK28 isolated from kiwi fruit. J Microbiol Biotechnol 23:1253-1259.  

14. Lee, J. S., Park, E. H., Kwun, S. Y., Yeo, S. H., Kim, M. D. (2014) Optimization of pretreatment of persimmon peel for ethanol production by yeast fermentation. Korean J Microbiol Biotechnol 42:202-206.  

15. Lief, J. J., Björn, A., Nils, O. N. (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:16-26.  

16. Mclaren, J. S. (2005) Crop biotechnology provides an opportunity to develop a sustainable future. Trends Biotechnol 23:339-342.  

17. Mielenz, J. R. (2001) Ethanol production from biomass: technology and commercialization status. Curr Opin Microbiol 4:324-329.  

18. Novak, M. (1981) Alcoholic fermentation: on the inhibitory effect of ethanol. Biotechnol Bioeng 23:201-211.  

19. Oh, K. K., Hong, S. I., Lee, Y. Y. (1998) Optimization of ammonia recycled percolation process for lignocellulosic biomass pretreatment. Korean J Chem Eng 36:784-791.  

20. Sassner, P., Galbe, M., Zacchi, G. (2008) Techno-economic evaluation of bioethanol production from three different lignocellulosic materials. Biomass Bioenerg 32:422-430.  

21. Wu, G., Nie, L., Freeland, S. J. (2007) The effects of differential gene expression on coding sequence features: analysis by one-way ANOVA. Biochem Biophys Res Commun 358:1108-1113.  

22. Zh, Q., Fu, Y., Wang, Y., Han, J., Lv, J., Wang, S. (2012) Improved ethanol production of a newly isolated thermotolerant Saccharomyces cerevisiae strain after high-energy-pulse-electron beam. J Appl Microbiol 112: 280-288.  



online submission
online submission
online submission
online submission
Sub Menu
Sub Banner
Sub Banner
Sub Menu
Sub Banner
Sub Banner
Sub Banner
Sub Banner
Sub Menu
Sub Menu