All Issue

2018 Vol.30, Issue 3 Preview Page
December 2018. pp. 161-169
Abstract

Non-thermal atmospheric plasma (NTAP) has been shown to be effective for controlling postharvest fungi in vitro, but little is known about its mode of action, fungal response to NTAP, and the effect of its application on fresh produce. Non-thermal atmospheric plasma was evaluated for its in vitro and in vivo antifungal activity against Alternaria alternata and Botrytis cinerea on paprika. The treatment with NTAP treatment resulted in complete inhibition of mycelial growth of A. alternata, and B. cinerea, particularly at 1000 W for 90 s. The results of in vivo assays demonstrated that NTAP treatment for 90 s inhibited the growth of these fungal pathogens by approximately 55% (A. alternata) and 20% (B. cinerea). The color and hardness of paprika exhibited no significant changes during 7 days of storage after NTAP treatment. The mechanisms by which NTAP treatment decreased fungal growth on paprika were directly associated with the disruption of fungal cell membrane. These findings suggest that the application of NTAP is an effective antifungal treatment approach for preserving paprika.

References
  1. Bermúdez-Aguirre D., Wemlinger E., Pedrow P., Barbosa-Cánovas G., Garcia-Perez M. (2013) Effect of atmospheric pressure cold plasma (APCP) on the inactivation of Escherichia coli in fresh produce. Food Control 34:149-157.10.1016/j.foodcont.2013.04.022
  2. Cha S. D., Jeon Y. J., Ahn G. R., Han J. I., Han K. H., Kim S. H. (2007) Characterization of Fusarium oxysporum Isolated from Paprika in Korea. Microbiol 35:91-96.
  3. Fernandez M. R., Turkington T. K., May W. E. (2009) Effectiveness of fungicide seed treatments for preventing seed-to seedling transmission of Fusarium graminearum under controlled-environment conditions. Can J Plant Sci 89:811-821.10.4141/CJPS08132
  4. Hong S. I., Lee H. H., Kim D. (2007) Effects of hot water treatment on the storage stability of Satsuma mandarin as a postharvest decay control. Postharvest Biol Technol 43:271-279.10.1016/j.postharvbio.2006.09.008
  5. Jayasena D. D., Kim H. J., Yong H. I., Park S., Kim K., Choe W., Jo C. (2015) Flexible thin-layer dielectric barrier discharge plasma treatment of pork butt and beef loin: Effects on pathogen inactivation and meat-quality attributes. Food Microbiol 46:51-57.10.1016/j.fm.2014.07.00925475266
  6. Jo Y. K., Cho J. M., Tsai T. C., Staack D., Kang M. H., Roh J. H., Shin D. B., Cromwell W., Gross D. (2014) A non-thermal plasma seed treatment method for management of a seedborne fungal pathogen on rice seed. Crop Sci 54:796-803.10.2135/cropsci2013.05.0331
  7. Joshi S. G., Cooper M., Yost A., Paff M., Ercan U. K., Fridman G., Friedman G., Fridman A., Brooks A.D. (2011) Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrob Agents Chemother 55:1053-1062.10.1128/AAC.01002-1021199923PMC3067084
  8. Khamsen N., Onwimol D., Teerakawanich N., Dechanupaprittha S., Kanokbannakorn W., Hongesombut K., Srisonphan S. (2016) Rice (Oryza sativa L.) seed sterilization and germination enhancement via atmospheric hybrid nonthermal discharge plasma. ACS Appl Mater Interfaces 8:19268-19275.10.1021/acsami.6b0455527404121
  9. Kim G. D., Lee S., Kang E. H., Shin Y. G., Jeon J. Y., Heo N. Y., Lee H.S. (2013) The pests survey of paprika export complexes and packing house in Korea. Korean J Agric Sci 40:93-99.10.7744/cnujas.2013.40.2.093
  10. Kim J. E., Oh Y. J., Won M. Y., Lee K. S., Min S. C. (2017) Microbial decontamination of onion powder using microwave-powered cold plasma treatments. Food Microbiol 62:112-123.10.1016/j.fm.2016.10.00627889137
  11. Lacombe A., Niemira B. A., Gurtler J. A., Fan X., Sites J., Boyd G., Chen H. (2015) Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes. Food Microbiol 46:479-484.10.1016/j.fm.2014.09.01025475318
  12. Laroussi M., Leipold F. (2003) Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasma at atmospheric pressure. Int J Mass Spectrom 233:81-86.10.1016/j.ijms.2003.11.016
  13. Lee H., Kim J. E., Chung M. S., Min S. C. (2015) Cold plasma treatment for the microbiological safety of cabbage, lettuce, and dried figs. Food Microbiol 51:74-80.10.1016/j.fm.2015.05.00426187830
  14. Lu Q., Liu D., Song Y., Zhou R., Niu J. (2014) Inactivation of the tomato pathogen Cladosporium fulvum by an atmospheric-pressure cold plasma jet. Plasma Process Polym 11:1028-1036.10.1002/ppap.201400070
  15. Lunov O., Zablotskii V., Churpita O., Chánová E., Syková E., Dejneka A., Kubinová S. (2014) Cell death induced by ozone and various non-thermal plasmas: therapeutic perspectives and limitations. Sci Rep 4:7129.10.1038/srep0712925410636PMC4238021
  16. Matsufuji H., Nakamura H., Chino M., Takeda M. (1998) Antioxidant Activity of Capsanthin and the Fatty Acid Esters in Paprika (Capsicum annuum). J Agric Food Chem 46:3468-3472.10.1021/jf980200i
  17. Niemira B. A. (2012) Cold plasma decontamination of foods. Annu Rev Food Sci Technol 3:125-142.10.1146/annurev-food-022811-10113222149075
  18. Siddique S. S., Hardy G. E. St. J., Bayliss K. L. (2018) Cold plasma: a potential new method to manage postharvest diseases caused by fungal plant pathogens. Plant Pathol 67:1011-1021.10.1111/ppa.12825
  19. Song H. P., Kim B., Choe J. H., Jung S., Moon S. Y., Choe W., Jo C. (2009) Evaluation of atmospheric pressure plasma to improve the safety of sliced cheese and ham inoculated by 3-strain cocktail Listeria monocytogenes. Food Microbiol 26:432-436.10.1016/j.fm.2009.02.01019376467
  20. Thirumdas R., Sarangapani C., Annapure U. S. (2015) Cold plasma: a novel non-thermal technology for food processing. Food Biophys 10:1-11.10.1007/s11483-014-9382-z
  21. Vajdi M., Pereira R. R. (1973) Comparative effects of ethylene oxide, gamma irradiation and microwave treatments on selected spices. J Food Sci 38:893-895.10.1111/j.1365-2621.1973.tb02102.x
  22. Wang R. X., Nian W. F., Wu H. Y., Feng H. Q., Zhang K., Zhang J., Zhu W. D., Becker K. H., Fang J. (2012) Atmospheric-pressure cold plasma treatment of contaminated fresh fruit and vegetable slices: inactivation and physiochemical properties evaluation. Eur Phys J D 66:276.10.1140/epjd/e2012-30053-1
  23. Williamson B., Tudzynski B., Tudzynski P., Van Kan J. A. (2007) Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol 8:561-580.10.1111/j.1364-3703.2007.00417.x20507522
  24. Xiong Z., Lu X. P., Feng A., Pan Y., Ostrikov K. (2010) Highly effective fungal inactivation in He + O2 atmospheric-pressure nonequilibrium plasmas. Phys Plasmas 17:123502.10.1063/1.3526678
Information
  • Publisher :Agriculture and Life Sciences Research Institute, Kangwon National University
  • Publisher(Ko) :강원대학교 농업생명과학대학 농업생명과학연구원
  • Journal Title :Journal of Agricultural, Life and Environmental Sciences
  • Journal Title(Ko) :강원농업생명환경연구
  • Volume : 30
  • No :3
  • Pages :161-169
  • Received Date :2018. 11. 05
  • Accepted Date : 2018. 11. 14
Journal Informaiton Agriculture and Life Sciences Research Institute Journal of Agricultural, Life and Environmental Sciences
  • NRF
  • KOFST
  • crosscheck
  • open access
  • orcid
  • KISTI Cited-by
  • ccl
  • KISTI Current Status
Journal Informaiton Journal Informaiton - close