Research Article
Baek, Y. T., Sul, S. G., Cho, Y. Y. (2023) Estimation of days after transplanting using an artificial intelligence CNN(Convolutional Neural Network) model in a closed-type plant factory. Hortic Sci Technol 41:81-90. doi:10.7235/HORT.20230008
10.7235/HORT.20230008Choi, Y. W., Kim, N. E., Paudel, B., Kim, H. T. (2022) Strawberry pests and disease detection technique optimized for symptons using deep learning algorithm. J Bio-Env Con 31:255-260. doi:10.12791/KSBEC.2022.31.3255
10.12791/KSBEC.2022.31.3.255Elnemr, H. A. (2019) Convolutional neural network architecture for plant seedling classification. Int J Adv Comput Sci Appl 10:319-325. doi:10.14569/IJACSA.2019.0100841
10.14569/IJACSA.2019.0100841Gupta, K., Rani, R., Bahia, N. K. (2020) Plant-seedling classification using transfer learning-based deep convolutional neural networks. Int J Agr & Environ Inform Sys 11:25-40. doi:10.4018/IJAEIS.2020100102
10.4018/IJAEIS.2020100102Han, H. S., Kim, D. H., Chae, J. W., Lee, S. A., Kim, Y. J., Cho, H. U., Cho, H. C. (2020) A Study of tomato disease classification system based on deep learning. Trans Korean Inst Electr Eng 69:349-355. doi:10.5370/KIEE.2020.69.2.349
10.5370/KIEE.2020.69.2.349Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K. Q. (2018) Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2261-2269. doi:10.1109/CVPR.2017.243
10.1109/CVPR.2017.243PMC5598342Kalaivani, K. S., Kanimozhiselvi, C. S., Priyadharshini, N., Nivedhashri, S., Nandhini, R. (2022) Classification of plant seedling using deep learning techniques. In: Hemanth, D.J., Pelusi, D, Vuppalapati, C. (eds) Intelligent data communication technologies and internet of things. Lecture Notes on Data Engineering and Communications Technologies, vol. 101. Springer, Singapore. doi:10.1007/978-981-16-7610-9_76
10.1007/978-981-16-7610-9_76Kumaratenna, K. P. S., Cho, Y. Y. (2024) Tea leaf disease classification using artificial intelligence (AI) models. J Bio-Env Con 33:1-11. doi:10.12791/KSBEC.2024.33.1.001
10.12791/KSBEC.2024.33.1.001Milioto, A., Lottes, P., Stachniss, C. (2018) Real-time semantic segmentation of crop and weed for precision agriculture robots leveraging background knowledge in CNNs. In 2018 IEEE Intl Conf on Robotics & Automation. doi:10.48550/arXiv.1709.06764
10.1109/ICRA.2018.8460962Moon, T. W., Park, J. Y., Son, J. E. (2020) Estimation of sweet pepper crop fresh weight with convolutional neural network. Protected Hortic Plant Fac 29:381-387. doi:10.12791/KSBEC.2020.29.4.381
10.12791/KSBEC.2020.29.4.381Purwaningsih, T., Anjani, I. A., Utami, P. B. (2018) Convolutional neural networks implementation for chili classification. In: 2018 International Symposium on Advanced Intelligent Informatics (SAIN) 190-194. doi:10.1109/SAIN.2018.8673373
10.1109/SAIN.2018.8673373Samiei, S., Rasti, P., Ly Vu, J., Rousseau, D. (2020) Deep learning-based detection of seedling development. Plant Methods 16:103. doi/10.1186/s13007-020-00647-9
10.1186/s13007-020-00647-932742300PMC7391498Sandeep Kumar, K., Rajeswari, Usha, B. N. (2018) Convolution neural network based weed detection in horticulture plantation. Int J Sci Res Rev 7:41-47. doi:16.10089.IJSRR.2018.V7I06.5245.2394
Shorten, C., Khoshgoftaar, T. M. (2019) A survey on image data augmentation for deep learning. J Bio Data 6:60. doi:10.1186/s40537-019-0197-0
10.1186/s40537-019-0197-0- Publisher :Agriculture and Life Sciences Research Institute, Kangwon National University
- Publisher(Ko) :강원대학교 농업생명과학대학 농업생명과학연구원
- Journal Title :Journal of Agricultural, Life and Environmental Sciences
- Journal Title(Ko) :농업생명환경연구
- Volume : 36
- No :2
- Pages :123-131
- Received Date : 2024-03-19
- Revised Date : 2024-05-28
- Accepted Date : 2024-06-03
- DOI :https://doi.org/10.22698/jales.20240011