Review Article
Acevedo, J. C., Posso, F. R., Durán, J. M., Arenas, E. (2018) Simulation of the gasification process of palm kernel shell using Aspen PLUS. J Phys Conf Ser 1126. https://doi.org/10.1088/1742-6596/1126/1/012010
10.1088/1742-6596/1126/1/012010Act On The Promotion Of Saving And Recycling Of Resources (2017) Pub. L. No. 15101, Korea Legislation Research Institute.
Act on the Promotion of the Development, Use, and Diffusion of New and Renewable Energy (2023) Pub. L. No. Presidential Decree No. 32315, Korea Legislation Research Institute.
Al-Hotmani, O. M. A., Al-Obaidi, M. A. A., John, Y. M., Patel, R., Mujtaba, I. M. (2020) Scope and limitations of the mathematical models developed for the forward feed multi-effect distillation process-a review. Processes 8. https://doi.org/10.3390/PR8091174
10.3390/pr8091174Angin, D. (2013) Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresour Technol 128:593-597. https://doi.org/10.1016/j.biortech.2012.10.150
10.1016/j.biortech.2012.10.150Bach, Q. V., Skreiberg, O. (2016) Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction. Renew Sustain Energy Rev 54:665-677. https://doi.org/10.1016/j.rser.2015.10.014
10.1016/j.rser.2015.10.014Balat, M., Balat, M., Kirtay, E., Balat, H. (2009) Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems. Energy Conv Manag 50:3147-3157. https://doi.org/10.1016/j.enconman.2009.08.014
10.1016/j.enconman.2009.08.014Balu, E., Lee, U., Chung, J. N. (2015) High temperature steam gasification of woody biomass - A combined experimental and mathematical modeling approach. Int J Hydrogen Energy 40:14104-14115. https://doi.org/10.1016/j.ijhydene.2015.08.085
10.1016/j.ijhydene.2015.08.085Basu, P. (2018) Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory (2nd edtion, Vol. 2nd). Academic Press.
10.1016/B978-0-12-812992-0.00007-8Basu, P., Butler, J., Leon, M. A. (2011) Biomass co-firing options on the emission reduction and electricity generation costs in coal-fired power plants. Renew Energy 36:282-288. https://doi.org/10.1016/j.renene.2010.06.039
10.1016/j.renene.2010.06.039Baxter, L. (2005) Biomass-coal co-combustion: Opportunity for affordable renewable energy. Fuel 84:1295-1302. https://doi.org/10.1016/j.fuel.2004.09.023
10.1016/j.fuel.2004.09.023Becker, A., Katzen, F., Puè, A., Ielpi, L. (n.d.) MINI-REVIEW Xanthan gum biosynthesis and application: a biochemical /genetic perspective.
Bharathiraja, B., Sudharsana, T., Jayamuthunagai, J., Praveenkumar, R., Chozhavendhan, S., Iyyappan, J. (2018) Biogas production - A review on composition, fuel properties, feed stock and principles of anaerobic digestion. Renew Sustain Energy Rev 90:pp.570-582. https://doi.org/10.1016/j.rser.2018.03.093
10.1016/j.rser.2018.03.093Blanco-Canqui, H. (2010) Energy crops and their implications on soil and environment. Agron J 102:403-419. https://doi.org/10.2134/agronj2009.0333
10.2134/agronj2009.0333Boateng, A. A. (2020) Introduction. In Pyrolysis of Biomass for Fuels and Chemicals (pp.1-21). Elsevier. https://doi.org/10.1016/b978-0-12-818213-0.00001-1
10.1016/B978-0-12-818213-0.00001-1Bondesson, P. M., Galbe, M. (2016) Process design of SSCF for ethanol production from steam-pretreated, acetic-acid-impregnated wheat straw. Biotechnol Biofuels 9. https://doi.org/10.1186/s13068-016-0635-6
10.1186/s13068-016-0635-6Brachi, P., Chirone, R., Miccio, M., Ruoppolo, G. (2019) Fluidized bed torrefaction of biomass pellets: A comparison between oxidative and inert atmosphere. Powder Technol 357:97-107. https://doi.org/10.1016/j.powtec.2019.08.058
10.1016/j.powtec.2019.08.058Bridgwater, A. V., Peacocke, G. V. C. (2000) Fast pyrolysis processes for biomass. Renew Sustain Energy Rev 4:1-73. www.elsevier.com/locate/rser
10.1016/S1364-0321(99)00007-6Bridgwater, A. V., Peacocke, G. V. C. (n.d.) Fast pyrolysis processes for biomass. www.elsevier.com/locate/rser
Broda, M., Yelle, D. J., Serwańska, K. (2022) Bioethanol Production from Lignocellulosic Biomass-Challenges and Solutions. Molecules 27. https://doi.org/10.3390/molecules27248717
10.3390/molecules27248717Cai, J., He, Y., Yu, X., Banks, S. W., Yang, Y., Zhang, X., Yu, Y., Liu, R., Bridgwater, A. V. (2017) Review of physicochemical properties and analytical characterization of lignocellulosic biomass. Renew Sustain Energy Rev 76:309-322. https://doi.org/10.1016/j.rser.2017.03.072
10.1016/j.rser.2017.03.072Cardoen, D., Joshi, P., Diels, L., Sarma, P. M., Pant, D. (2015) Agriculture biomass in India: Part 1. Estimation and characterization. Resour Conserv Recycl 102:39-48. https://doi.org/10.1016/j.resconrec.2015.06.003
10.1016/j.resconrec.2015.06.003Castaldi, M., van Deventer, J., Lavoie, J. M., Legrand, J., Nzihou, A., Pontikes, Y., Py, X., Vandecasteele, C., Vasudevan, P. T., Verstraete, W. (2017) Progress and Prospects in the Field of Biomass and Waste to Energy and Added-Value Materials. WASTE BIOMASS VALORI 8:1875-1884. https://doi.org/10.1007/s12649-017-0049-0
10.1007/s12649-017-0049-0Chen, D., Chen, F., Cen, K., Cao, X., Zhang, J., Zhou, J. (2020) Upgrading rice husk via oxidative torrefaction: Characterization of solid, liquid, gaseous products and a comparison with non-oxidative torrefaction. Fuel 275. https://doi.org/10.1016/j.fuel.2020.117936
10.1016/j.fuel.2020.117936Chen, H., Qiu, W. (2010) Key technologies for bioethanol production from lignocellulose. Biotechnol Adv 28:556-562. https://doi.org/10.1016/j.biotechadv.2010.05.005
10.1016/j.biotechadv.2010.05.005Chen, L., Yang, K., Huang, J., Liu, P., Yang, J., Pan, Y., Qi, F., Jia, L. (2022) Experimental and kinetic study on flash pyrolysis of biomass via on-line photoionization mass spectrometry. Appl Energy Combust Sci 9. https://doi.org/10.1016/j.jaecs.2022.100057
10.1016/j.jaecs.2022.100057Chen, W. H., Kuo, P. C. (2010) A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy 35:2580-2586. https://doi.org/10.1016/j.energy.2010.02.054
10.1016/j.energy.2010.02.054Chen, W. H., Lu, K. M., Lee, W. J., Liu, S. H., Lin, T. C. (2014) Non-oxidative and oxidative torrefaction characterization and SEM observations of fibrous and ligneous biomass. Appl Energy 114:104-113. https://doi.org/10.1016/j.apenergy.2013.09.045
10.1016/j.apenergy.2013.09.045Chen, W. H., Ye, S. C., Sheen, H. K. (2012) Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating. Bioresour Technol 118:195-203. https://doi.org/10.1016/j.biortech.2012.04.101
10.1016/j.biortech.2012.04.101Cheng, J., Li, J., Zheng, L. (2021) Achievements and Perspectives in 1,4-Butanediol Production from Engineered Microorganisms. J Agric Food Chem 69:10480-10485). https://doi.org/10.1021/acs.jafc.1c03769
10.1021/acs.jafc.1c03769Choi, H., Kim, Y. T., Tsang, Y. F., Lee, J. (2023) Integration of thermochemical conversion processes for waste-to-energy: A review. Korean J Chem Eng 40:1815-1821. https://doi.org/10.1007/s11814-023-1494-z
10.1007/s11814-023-1494-zChoi, S. K., Choi, Y. S., Jeong, Y. W., Han, S. Y., Van Nguyen, Q. (2020) Simulation of the fast pyrolysis of coffee ground in a tilted-slide reactor. Energies 13. https://doi.org/10.3390/en13246605
10.3390/en13246605Choudhury, H. A., Chakma, S., Moholkar, V. S. (2015) Biomass Gasification Integrated Fischer-Tropsch Synthesis: Perspectives, Opportunities and Challenges. Recent Advances in Thermochemical Conversion of Biomass 383-435. https://doi.org/10.1016/B978-0-444-63289-0.00014-4
10.1016/B978-0-444-63289-0.00014-4Dai, J., Saayman, J., Grace, J. R., Ellis, N. (2015) Gasification of Woody Biomass. Annu Rev Chem Biomol Eng 6:77-99. https://doi.org/10.1146/annurev-chembioeng-061114-123310
10.1146/annurev-chembioeng-061114-123310Dai, J., Sokhansanj, S., Grace, J. R., Bi, X., Lim, C. J., Melin, S. (2008) Overview and some issues related to co-firing biomass and coal. Can J Chem Eng 86:367-386. https://doi.org/10.1002/cjce.20052
10.1002/cjce.20052Darvell, L. I., Jones, J. M., Gudka, B., Baxter, X. C., Saddawi, A., Williams, A., Malmgren, A. (2010) Combustion properties of some power station biomass fuels. Fuel 89:2881-2890. https://doi.org/10.1016/j.fuel.2010.03.003
10.1016/j.fuel.2010.03.003Das, P. K., Sahoo, A., Dasu Veeranki, V. (2023a) Engineered yeasts for lignocellulosic bioethanol production. Advances in Yeast Biotechnology for Biofuels and Sustainability: Value-Added Products and Environmental Remediation Applications 47-72. https://doi.org/10.1016/B978-0-323-95449-5.00013-8
10.1016/B978-0-323-95449-5.00013-8Das, P. K., Sahoo, A., Dasu Veeranki, V. (2023b) Engineered yeasts for lignocellulosic bioethanol production. Advances in Yeast Biotechnology for Biofuels and Sustainability: Value-Added Products and Environmental Remediation Applications 47-72. https://doi.org/10.1016/B978-0-323-95449-5.00013-8
10.1016/B978-0-323-95449-5.00013-8De Oliveira, J. L., da Silva, J. N., Martins, M. A., Pereira, E. G., da Conceição Trindade Bezerra e Oliveira, M. (2018) Gasification of waste from coffee and eucalyptus production as an alternative source of bioenergy in Brazil. Sustain Energy Technol Assessments 27:159-166. https://doi.org/10.1016/j.seta.2018.04.005
10.1016/j.seta.2018.04.005De Vrieze, J., Verstraete, W. (2016) Perspectives for microbial community composition in anaerobic digestion: from abundance and activity to connectivity. Environ Microbiol 18:2797-2809) https://doi.org/10.1111/1462-2920.13437
10.1111/1462-2920.13437Demirbas, A. (2004) Combustion characteristics of different biomass fuels. PROG ENERG COMBUST 30:219-230. https://doi.org/10.1016/j.pecs.2003.10.004
10.1016/j.pecs.2003.10.004Demirbaş, A., Arin, G. (2002) An overview of biomass pyrolysis. Energy Sources 24:471-482. https://doi.org/10.1080/00908310252889979
10.1080/00908310252889979Dinesha, P., Kumar, S., Rosen, M. A. (2019) Biomass Briquettes as an Alternative Fuel: A Comprehensive Review. Energy Technol 7. https://doi.org/10.1002/ente.201801011
10.1002/ente.201801011Dong, P. (2011) Ethanol production from lignocellulosic biomass. Xiandai Huagong/Mod Chem Ind 31:40-44. https://doi.org/10.5772/intechopen.86437
10.5772/intechopen.86437Enforcement Decree of the Act on the Sustainable Use of Timbers (2018) Pub. L. No. 29424, Ministry of Government Legislation.
Euh, S. H., Kafle, S., Lee, S. Y., Lee, C. G., Jo, L., Choi, Y. S., Oh, J. H., Kim, D. H. (2017) Establishment and validation of tar fouling mechanism in wood pellet boiler using kinetic models. Appl Therm Eng 127:165-175. https://doi.org/10.1016/j.applthermaleng.2017.07.212
10.1016/j.applthermaleng.2017.07.212Faria, S., Vieira, P. A., Resende, M. M., França, F. P., Cardoso, V. L. (2009) A comparison between shaker and bioreactor performance based on the kinetic parameters of xanthan gum production. Appl Biochem Biotechnol 156:45-58. https://doi.org/10.1007/s12010-008-8485-8
10.1007/s12010-008-8485-8Fatih Demirbas, M. (2009). Biorefineries for biofuel upgrading: A critical review. Applied Energy 86. https://doi.org/10.1016/j.apenergy.2009.04.043
10.1016/j.apenergy.2009.04.043Fernandes, I. J., Calheiro, D., Kieling, A. G., Moraes, C. A. M., Rocha, T. L. A. C., Brehm, F. A., Modolo, R. C. E. (2016) Characterization of rice husk ash produced using different biomass combustion techniques for energy. Fuel 165:351-359. https://doi.org/10.1016/j.fuel.2015.10.086
10.1016/j.fuel.2015.10.086Fuller, W. S. (2004) PULPING | Chip Preparation. J. Burley (Ed.), Encyclopedia of Forest Sciences 883-899. https://doi.org/10.1016/B0-12-145160-7/00126-5
10.1016/B0-12-145160-7/00126-5Gan, Y. Y., Chen, W. H., Ong, H. C., Sheen, H. K., Chang, J. S., Hsieh, T. H., Ling, T. C. (2020a) Effects of dry and wet torrefaction pretreatment on microalgae pyrolysis analyzed by TG-FTIR and double-shot Py-GC/MS. Energy 210. https://doi.org/10.1016/j.energy.2020.118579
10.1016/j.energy.2020.118579Gan, Y. Y., Ong, H. C., Chen, W. H., Sheen, H. K., Chang, J. S., Chong, C. T., Ling, T. C. (2020b) Microwave-assisted wet torrefaction of microalgae under various acids for coproduction of biochar and sugar. J Clean Prod 253. https://doi.org/10.1016/j.jclepro.2019.119944
10.1016/j.jclepro.2019.119944Gao, X., Zhang, Y., Li, B., Yu, X. (2016) Model development for biomass gasification in an entrained flow gasifier using intrinsic reaction rate submodel. Energy Conv Manag 108:120-131. https://doi.org/10.1016/j.enconman.2015.10.070
10.1016/j.enconman.2015.10.070Ghenai, C., Inayat, A. (2019) Sustainable Alternative Syngas Fuel. IntechOpen. https://doi.org/10.5772/intechopen.78190
10.5772/intechopen.78190Gnanasekaran, L., Priya, A. K., Thanigaivel, S., Hoang, T. K. A., Soto-Moscoso, M. (2023) The conversion of biomass to fuels via cutting-edge technologies: Explorations from natural utilization systems. Fuel 331. https://doi.org/10.1016/j.fuel.2022.125668
10.1016/j.fuel.2022.125668Goria, K., Kothari, R., Singh, A., Singh, H. M., Tyagi, V. V. (2022) Biohydrogen: potential applications, approaches, and hurdles to overcome. Handbook of Biofuels 399-418. https://doi.org/10.1016/B978-0-12-822810-4.00020-8
10.1016/B978-0-12-822810-4.00020-8Guda, V. K., Steele, P. H., Penmetsa, V. K., Li, Q. (2015) Fast Pyrolysis of Biomass: Recent Advances in Fast Pyrolysis Technology. Recent Advances in Thermochemical Conversion of Biomass 177-211. https://doi.org/10.1016/B978-0-444-63289-0.00007-7
10.1016/B978-0-444-63289-0.00007-7Gunay, A., Karadag, D. (2015) Recent developments in the anaerobic digestion of olive mill effluents. Process Biochem 50:1893-1903. https://doi.org/10.1016/j.procbio.2015.07.008
10.1016/j.procbio.2015.07.008Halim, R., Rupasinghe, T. W. T., Tull, D. L., Webley, P. A. (2013) Mechanical cell disruption for lipid extraction from microalgal biomass. Bioresour Technol 140:53-63. https://doi.org/10.1016/j.biortech.2013.04.067
10.1016/j.biortech.2013.04.067Hang, Y. D., Woodams, E. E. (2001) Enzymatic Production of Reducing Sugars from Corn Cobs. LWT 34:140-142. https://doi.org/10.1006/fstl.2000.0733
10.1006/fstl.2000.0733Hays, M. D., Fine, P. M., Geron, C. D., Kleeman, M. J., Gullett, B. K. (2005) Open burning of agricultural biomass: Physical and chemical properties of particle-phase emissions. Atmos Environ 39:6747-6764. https://doi.org/10.1016/j.atmosenv.2005.07.072
10.1016/j.atmosenv.2005.07.072HE, Z., PAGLIARI, P. H., WALDRIP, H. M. (2016) Applied and Environmental Chemistry of Animal Manure: A Review. Pedosphere 26:779-816. https://doi.org/10.1016/S1002-0160(15)60087-X
10.1016/S1002-0160(15)60087-XHernández, A. B., Okonta, F., Freeman, N. (2017) Sewage sludge charcoal production by N2- and CO2-torrefaction. J Environ Chem Eng 5:4406-4414. https://doi.org/10.1016/j.jece.2017.08.001
10.1016/j.jece.2017.08.001Hornung, A. (2013) Intermediate pyrolysis of biomass. Biomass Combustion Science, Technology and Engineering 172-186. https://doi.org/10.1533/9780857097439.2.172
10.1533/9780857097439.2.172Hornung, A., Schröder, E. (2014a) Production of Biochar and Activated Carbon via Intermediate Pyrolysis-Recent Studies for Non-Woody Biomass. http://booksupport.wiley.com
10.1002/9781118693643.ch17Hornung, A., Schröder, E. (2014b) Production of Biochar and Activated Carbon via Intermediate Pyrolysis-Recent Studies for Non-Woody Biomass. http://booksupport.wiley.com
10.1002/9781118693643.ch17Hossain, S. M. Z. (2019) Biochemical Conversion of Microalgae Biomass into Biofuel. Chem Eng Technol 42:2594-2607. https://doi.org/10.1002/ceat.201800605
10.1002/ceat.201800605Huang, C., Jiang, X., Shen, X., Hu, J., Tang, W., Wu, X., Ragauskas, A., Jameel, H., Meng, X., Yong, Q. (2022) Lignin-enzyme interaction: A roadblock for efficient enzymatic hydrolysis of lignocellulosics. Renew Sustain Energy Rev 154. https://doi.org/10.1016/j.rser.2021.111822
10.1016/j.rser.2021.111822International Renewable Energy Agency (2024) RENEWABLE ENERGY STATISTICS 2024 STATISTIQUES D'ÉNERGIE RENOUVELABLE 2024 ESTADÍSTICAS DE ENERGÍA RENOVABLE 2024. www.irena.org
Iranmahboob, J., Nadim, F., Monemi, S. (2002) Optimizing acid-hydrolysis: a critical step for production of ethanol from mixed wood chips. Biomass Bioenergy 22:401-404. https://doi.org/10.1016/S0961-9534(02)00016-8
10.1016/S0961-9534(02)00016-8Isemin, R., Klimov, D., Larina, O., Sytchev, G., Zaichenko, V., Milovanov, O. (2019) Application of torrefaction for recycling bio-waste formed during anaerobic digestion. Fuel 243:230-239. https://doi.org/10.1016/j.fuel.2019.01.119
10.1016/j.fuel.2019.01.119Jenkins, B. M., Baxter, L. L., Koppejan, J. (2019) Biomass Combustion. In Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power (2nd edition). John Wiley & Sons .
10.1002/9781119417637.ch3Jennings, E. W., Schell, D. J. (2011) Conditioning of dilute-acid pretreated corn stover hydrolysate liquors by treatment with lime or ammonium hydroxide to improve conversion of sugars to ethanol. Bioresour Technol 102:1240-1245. https://doi.org/10.1016/j.biortech.2010.08.024
10.1016/j.biortech.2010.08.024Jia, X., Qin, X., Tian, X., Zhao, Y., Yang, T., Huang, J. (2021) Inoculating with the microbial agents to start up the aerobic composting of mushroom residue and wood chips at low temperature. J Environ Chem Eng 9. https://doi.org/10.1016/j.jece.2021.105294
10.1016/j.jece.2021.105294Ju, Y. M., Oh, K. C., Kim., Lee, K. Y., Kim, D. H. (2018) Performance Analysis of a Vacuum Pyrolysis System. J Biosyst Eng 43:14-20. https://doi.org/10.5307/JBE.2018.43.1.014
Kanagasabai, M., Maruthai, K., Thangavelu, V. (2019) Simultaneous Saccharification and Fermentation and Factors Influencing Ethanol Production in SSF Process. In Y. Yun (Ed.), Alcohol Fuels. IntechOpen. https://doi.org/10.5772/intechopen.86480
10.5772/intechopen.86480Kang, S., Fu, J., Zhang, G. (2018) From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis. Renew Sustain Energy Rev 94:340-362. https://doi.org/10.1016/j.rser.2018.06.016
10.1016/j.rser.2018.06.016Karaffa, L., Sándor, E., Fekete, E., Szentirmai, A. (2001) The biochemistry of citric acid of accumulation by Aspergillus niger (a review). ACTA MICROBIOL IMM H 48:429-440.
10.1556/AMicr.48.2001.3-4.11Kayo, C., Tojo, S., Iwaoka, M., Matsumoto, T. (2013). Evaluation of Biomass Production and Utilization Systems. Research Approaches to Sustainable Biomass Systems 309-346. https://doi.org/10.1016/B978-0-12-404609-2.00014-3
10.1016/B978-0-12-404609-2.00014-3Kim, K. H., Kim, J. Y., Cho, T. S., Choi, J. W. (2012) Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresour Technol 118:158-162. https://doi.org/10.1016/j.biortech.2012.04.094
10.1016/j.biortech.2012.04.094Kim, M. J., Kim, S. H. (2019) Evaluation of Biogas Production Performance During the Anaerobic Digestion of Lipids with Four or More Double Bonds. J Biosyst Eng 44:37-40. https://doi.org/10.1007/s42853-019-00004-2
10.1007/s42853-019-00004-2Kim, S. J., Park, S., Oh, K. C., Ju, Y. M., Cho, L. H., Kim, D. H. (2021) Development of surface torrefaction process to utilize agro-byproducts as an energy source. Energy 233:121192. https://doi.org/10.1016/j.energy.2021.121192
10.1016/j.energy.2021.121192Kim, S.-J., Park, S.-Y., Cho, L.-H., Oh, K.-C., Jeon, Y.-K., Lee, C.-G., Kim, D.-H. (2022) Evaluation of Fuel Characteristics of Kenaf for Energy Source Utilization and Fuel Quality Improvement through Torrefaction. J Agric & Life Sci 56:119-127. https://doi.org/10.14397/jals.2022.56.3.119
10.14397/jals.2022.56.3.119Koppram, R., Nielsen, F., Albers, E., Lambert, A., Wännström, S., Welin, L., Zacchi, G., Olsson, L. (2013) Simultaneous saccharification and co-fermentation for bioethanol production using corncobs at lab, PDU and demo scales. Biotechnol Biofuels 6. https://doi.org/10.1186/1754-6834-6-2
10.1186/1754-6834-6-2Koyama, M., Yamamoto, S., Ishikawa, K., Ban, S., Toda, T. (2014) Anaerobic digestion of submerged macrophytes: Chemical composition and anaerobic digestibility. Ecol Eng 69:304-309. https://doi.org/10.1016/j.ecoleng.2014.05.013
10.1016/j.ecoleng.2014.05.013Kumar, A., Kumar, N., Baredar, P., Shukla, A. (2015) A review on biomass energy resources, potential, conversion and policy in India. Renew Sustain Energy Rev 45:530-539. https://doi.org/10.1016/j.rser.2015.02.007
10.1016/j.rser.2015.02.007Kumar, B., Verma, P. (2021) Biomass-based biorefineries: An important architype towards a circular economy. Fuel 288. https://doi.org/10.1016/j.fuel.2020.119622
10.1016/j.fuel.2020.119622Kumar, G., Dharmaraja, J., Arvindnarayan, S., Shoban, S., Bakonyi, P., Saratale, G. D., Nemestóthy, N., Bélafi-Bakó, K., Yoon, J. J., Kim, S. H. (2019) A comprehensive review on thermochemical, biological, biochemical and hybrid conversion methods of bio-derived lignocellulosic molecules into renewable fuels. Fuel 251:352-367. https://doi.org/10.1016/j.fuel.2019.04.049
10.1016/j.fuel.2019.04.049Lei, Z., Li, C., Chen, B. (2003) Extractive distillation: A review. Sep Purif Rev 32:121-213. https://doi.org/10.1081/SPM-120026627
10.1081/SPM-120026627Lenihan, P., Orozco, A., O'Neill, E., Ahmad, M. N. M., Rooney, D. W., Walker, G. M. (2010) Dilute acid hydrolysis of lignocellulosic biomass. J Chem Eng 156:395-403. https://doi.org/10.1016/j.cej.2009.10.061
10.1016/j.cej.2009.10.061Li, Q., Qiao, W., Wang, X., Takayanagi, K., Shofie, M., Li, Y. Y. (2015) Kinetic characterization of thermophilic and mesophilic anaerobic digestion for coffee grounds and waste activated sludge. Waste Manag 36:77-85. https://doi.org/10.1016/j.wasman.2014.11.016
10.1016/j.wasman.2014.11.016Li, W., Zhou, Z., Wang, D. (2023) Recent Advances, Challenges, and Metabolic Engineering Strategies in L-Cysteine Biosynthesis. Fermentation 9:802. https://doi.org/10.3390/fermentation9090802
10.3390/fermentation9090802Li, Y., Jin, Y., Borrion, A., Li, H., Li, J. (2017) Effects of organic composition on mesophilic anaerobic digestion of food waste. Bioresour Technol 244:213-224. https://doi.org/10.1016/j.biortech.2017.07.006
10.1016/j.biortech.2017.07.006Liguori, R., Faraco, V. (2016) Biological processes for advancing lignocellulosic waste biorefinery by advocating circular economy. Bioresour Technol 215:13-20. https://doi.org/10.1016/j.biortech.2016.04.054
10.1016/j.biortech.2016.04.054Limtong, S., Sringiew, C., Yongmanitchai, W. (2007) Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresour Technol 98:3367-3374. https://doi.org/10.1016/j.biortech.2006.10.044
10.1016/j.biortech.2006.10.044Liu, L., Zhang, Z., Wang, J., Fan, Y., Shi, W., Liu, X., Shun, Q. (2019) Simultaneous saccharification and co-fermentation of corn stover pretreated by H2O2 oxidative degradation for ethanol production. Energy 168:946-952. https://doi.org/10.1016/j.energy.2018.11.132
10.1016/j.energy.2018.11.132Liu, Z. H., Chen, H. Z. (2016) Simultaneous saccharification and co-fermentation for improving the xylose utilization of steam exploded corn stover at high solid loading. Bioresour Technol 201:15-26. https://doi.org/10.1016/j.biortech.2015.11.023
10.1016/j.biortech.2015.11.023Lohani, S. P., Havukainen, J. (2018) Anaerobic Digestion: Factors Affecting Anaerobic Digestion Process. Energy, Environment, and Sustainability 343-359. https://doi.org/10.1007/978-981-10-7413-4_18
10.1007/978-981-10-7413-4_18Lozano, F. J., Lozano, R. (2018) Assessing the potential sustainability benefits of agricultural residues: Biomass conversion to syngas for energy generation or to chemicals production. J Clean Prod 172:4162-4169. https://doi.org/10.1016/j.jclepro.2017.01.037
10.1016/j.jclepro.2017.01.037Lynam, J. G., Coronella, C. J., Yan, W., Reza, M. T., Vasquez, V. R. (2011) Acetic acid and lithium chloride effects on hydrothermal carbonization of lignocellulosic biomass. Bioresour Technol 102:6192-6199. https://doi.org/10.1016/j.biortech.2011.02.035
10.1016/j.biortech.2011.02.035Makareviciene, V., Sendzikiene, E. (2022) Application of Microalgae Biomass for Biodiesel Fuel Production. Energies 15. https://doi.org/10.3390/en15114178
10.3390/en15114178Maneerung, T., Li, X., Li, C., Dai, Y., Wang, C. H. (2018) Integrated downdraft gasification with power generation system and gasification bottom ash reutilization for clean waste-to-energy and resource recovery system. J Clean Prod 188:69-79. https://doi.org/10.1016/j.jclepro.2018.03.287
10.1016/j.jclepro.2018.03.287Manogaran, M. D., Shamsuddin, R., Mohd Yusoff, M. H., Lay, M., Siyal, A. A. (2022) A review on treatment processes of chicken manure. Cleaner Circ Bioecon 2:100013. https://doi.org/10.1016/j.clcb.2022.100013
10.1016/j.clcb.2022.100013Martín, J., Santos, J. L., Aparicio, I., Alonso, E. (2015) Pharmaceutically active compounds in sludge stabilization treatments: Anaerobic and aerobic digestion, wastewater stabilization ponds and composting. Sci Total Environ 503-504, 97-104. https://doi.org/10.1016/j.scitotenv.2014.05.089
10.1016/j.scitotenv.2014.05.089Mat Aron, N. S., Khoo, K. S., Chew, K. W., Show, P. L., Chen, W. H., Nguyen, T. H. P. (2020) Sustainability of the four generations of biofuels - A review. Int J Energy Res 44:9266-9282. https://doi.org/10.1002/er.5557
10.1002/er.5557Mckendry, P. (2002a) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37-46.
10.1016/S0960-8524(01)00118-3Mckendry, P. (2002b) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83:47-54.
10.1016/S0960-8524(01)00119-5Mishra, B., Mohanta, Y. K., Reddy, C. N., Reddy, S. D. M., Mandal, S. K., Yadavalli, R., Sarma, H. (2023) Valorization of agro-industrial biowaste to biomaterials: An innovative circular bioeconomy approach. Circ Econ 2:100050. https://doi.org/10.1016/j.cec.2023.100050
10.1016/j.cec.2023.100050Moreno, A. D., Tomás-Pejó, E., Ibarra, D., Ballesteros, M., Olsson, L. (2013) Fed-batch SSCF using steam-exploded wheat straw at high dry matter consistencies and a xylose-fermenting Saccharomyces cerevisiae strain: effect of laccase supplementation. http://www.biotechnologyforbiofuels.com/content/6/1/160
10.1186/1754-6834-6-160Morgano, M. T., Bergfeldt, B., Leibold, H., Richter, F., Stapf, D. (2018) Intermediate pyrolysis of agricultural waste: A decentral approach towards circular economy. Chem Eng Trans 65:649-654. https://doi.org/10.3303/CET1865109
Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., Ladisch, M. (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673-686. https://doi.org/10.1016/j.biortech.2004.06.025
10.1016/j.biortech.2004.06.025Ndaba, B., Chiyanzu, I., Marx, S. (2015) N-Butanol derived from biochemical and chemical routes: A review. Appl Biotechnol Rep 8:1-9. https://doi.org/10.1016/j.btre.2015.08.001
10.1016/j.btre.2015.08.001Nepal, R., Kim, H. J., Poudel, J., Oh, S. C. (2022) A study on torrefaction of spent coffee ground to improve its fuel properties. Fuel 318. https://doi.org/10.1016/j.fuel.2022.123643
10.1016/j.fuel.2022.123643Nizami, A. S., Rehan, M., Waqas, M., Naqvi, M., Ouda, O. K. M., Shahzad, K., Miandad, R., Khan, M. Z., Syamsiro, M., Ismail, I. M. I., Pant, D. (2017) Waste biorefineries: Enabling circular economies in developing countries. Bioresour Technol 241:1101-1117. Elsevier Ltd. https://doi.org/10.1016/j.biortech.2017.05.097
10.1016/j.biortech.2017.05.097Nunes, L. J. R., Matias, J. C. O., Catalão, J. P. S. (2016) Biomass combustion systems: A review on the physical and chemical properties of the ashes. Renew Sustain Energy Rev 53:235-242. https://doi.org/10.1016/j.rser.2015.08.053
10.1016/j.rser.2015.08.053Obi, O. F. (2015) Effect of briquetting temperature on the properties of biomass briquettes. Afr J Sci Technol Innov Dev 7:386-394. https://doi.org/10.1080/20421338.2015.1096508
10.1080/20421338.2015.1096508Oh, K. C., Park, S. Y., Kim, S. J., Choi, Y. S., Lee, C. G., Cho, L. H., Kim, D. H. (2019) Development and validation of mass reduction model to optimize torrefaction for agricultural byproduct biomass. Renew Energy 139:988-999. https://doi.org/10.1016/j.renene.2019.02.106
10.1016/j.renene.2019.02.106Ohimain, E. I., Izah, S. C. (2017) A review of biogas production from palm oil mill effluents using different configurations of bioreactors. Renew Sustain Energy Rev 70:242-253. https://doi.org/10.1016/j.rser.2016.11.221
10.1016/j.rser.2016.11.221Okolie, J. A., Nanda, S., Dalai, A. K., Kozinski, J. A. (2021) Chemistry and Specialty Industrial Applications of Lignocellulosic Biomass. Waste Biomass Valorization 12:2145-2169. https://doi.org/10.1007/s12649-020-01123-0
10.1007/s12649-020-01123-0Olofsson, K., Palmqvist, B., Lidén, G. (2010) Improving simultaneous saccharification and co-fermentation of pretreated wheat straw using both enzyme and substrate feeding. http://www.biotechnologyforbiofuels.com/content/3/1/17
10.1186/1754-6834-3-17Orisaleye, J. I., Jekayinfa, S. O., Dittrich, C., Obi, O. F., Pecenka, R. (2023) Effects of Feeding Speed and Temperature on Properties of Briquettes from Poplar Wood Using a Hydraulic Briquetting Press. Resources 12. https://doi.org/10.3390/resources12010012
10.3390/resources12010012Park, H. J., Jeon, J. K., Suh, D. J., Suh, Y. W., Heo, H. S., Park, Y. K. (2011) Catalytic Vapor Cracking for Improvement of Bio-Oil Quality. Catalysis Surveys from Asia 15:161-180. https://doi.org/10.1007/s10563-011-9119-7
10.1007/s10563-011-9119-7Park, J. Y., Park, M. S., Lee, Y. C., Yang, J. W. (2015) Advances in direct transesterification of algal oils from wet biomass. Bioresour Technol 184:267-275. https://doi.org/10.1016/j.biortech.2014.10.089
10.1016/j.biortech.2014.10.089Park, S. Y., Kim, S. J., Oh, K. C., Cho, L. H., Jeon, Y. K., Kim, D. H. (2023a) Evaluation of the Optimal Conditions for Oxygen-Rich and Oxygen-Lean Torrefaction of Forestry Byproduct as a Fuel. Energies 16. https://doi.org/10.3390/en16124763
10.3390/en16124763Park, S., Jeong, H. R., Shin, Y. A., Kim, S. J., Ju, Y. M., Oh, K. C., Cho, L. H., Kim, D. (2021) Performance optimisation of fuel pellets comprising pepper stem and coffee grounds through mixing ratios and torrefaction. Energies 14. https://doi.org/10.3390/en14154667
10.3390/en14154667Park, S., Kim, S. J., Oh, K. C., Cho, L., Jeon, Y. K., Kim, D. H. (2023b) Identification of differences and comparison of fuel characteristics of torrefied agro-byproducts under oxidative conditions. Heliyon 9. https://doi.org/10.1016/j.heliyon.2023.e16746
10.1016/j.heliyon.2023.e16746Park, S., Kim, S. J., Oh, K. C., Cho, L., Kim, M. J., Jeong, I. S., Lee, C. G., Kim, D. H. (2020) Investigation of agro-byproduct pellet properties and improvement in pellet quality through mixing. Energy 190:116380. https://doi.org/10.1016/j.energy.2019.116380
10.1016/j.energy.2019.116380Park, S., Kim, S. J., Oh, K. C., Jeon, Y. K., Kim, Y., Cho, Ay. Y., Lee, D., Jang, C. S., Kim, D. H. (2023c) Biochar from Agro-byproducts for Use as a Soil Amendment and Solid Biofuel. J Biosyst Eng https://doi.org/10.1007/s42853-023-00175-z
10.1007/s42853-023-00175-zPasalari, H., Gholami, M., Rezaee, A., Esrafili, A., Farzadkia, M. (2021) Perspectives on microbial community in anaerobic digestion with emphasis on environmental parameters: A systematic review. Chemosphere 270. https://doi.org/10.1016/j.chemosphere.2020.128618
10.1016/j.chemosphere.2020.128618Pattiya, A. (2017) Fast pyrolysis. Direct Thermochemical Liquefaction for Energy Applications 3-28. https://doi.org/10.1016/B978-0-08-101029-7.00001-1
10.1016/B978-0-08-101029-7.00001-1Paul, T. W., Serpil, B. (1996) The influence of temperature and heating rate on the slow pyrolysis of biomass. Renew Energy 7:233-250. https://doi.org/10.1016/0960-1481(96)00006-7
10.1016/0960-1481(96)00006-7Rajan, K., Carrier, D. J. (2014) Effect of dilute acid pretreatment conditions and washing on the production of inhibitors and on recovery of sugars during wheat straw enzymatic hydrolysis. Biomass Bioenergy 62:222-227. https://doi.org/10.1016/j.biombioe.2014.01.013
10.1016/j.biombioe.2014.01.013Roman, K., Rzodkiewicz, W., Hryniewicz, M. (2023) Analysis of Forest Biomass Wood Briquette Structure According to Different Tests of Density. Energies 16. https://doi.org/10.3390/en16062850
10.3390/en16062850Ross, R. P., Morgan, S., Hill, C. (2002) Preservation and fermentation: past, present and future. Int J Food Microbiol 79:3-16. www.elsevier.com/locate/ijfoodmicro
10.1016/S0168-1605(02)00174-5Rousset, P., MacEdo, L., Commandré, J. M., Moreira, A. (2012a) Biomass torrefaction under different oxygen concentrations and its effect on the composition of the solid by-product. J Anal Appl Pyrolysis 96:86-91. https://doi.org/10.1016/j.jaap.2012.03.009
10.1016/j.jaap.2012.03.009Rousset, P., MacEdo, L., Commandré, J. M., Moreira, A. (2012b) Biomass torrefaction under different oxygen concentrations and its effect on the composition of the solid by-product. J Anal Appl Pyrolysis 96:86-91. https://doi.org/10.1016/j.jaap.2012.03.009
10.1016/j.jaap.2012.03.009Ruiz, J. A., Juárez, M. C., Morales, M. P., Muñoz, P., Mendívil, M. A. (2013) Biomass gasification for electricity generation: Review of current technology barriers. Renew Sustain Energy Rev 18:174-183. https://doi.org/10.1016/j.rser.2012.10.021
10.1016/j.rser.2012.10.021Ryu, C., Yang, Y. Bin, Khor, A., Yates, N. E., Sharifi, V. N., Swithenbank, J. (2006) Effect of fuel properties on biomass combustion: Part I. Experiments - Fuel type, equivalence ratio and particle size. Fuel 85:1039-1046. https://doi.org/10.1016/j.fuel.2005.09.019
10.1016/j.fuel.2005.09.019Saadon, S., Uemura, Y., Mansor, N. (2014) Torrefaction in the Presence of Oxygen and Carbon Dioxide: The Effect on Yield of Oil Palm Kernel Shell. Procedia Chem 9:194-201. https://doi.org/10.1016/j.proche.2014.05.023
10.1016/j.proche.2014.05.023Saini, J. K., Himanshu, Hemansi, Kaur, A., Mathur, A. (2022) Strategies to enhance enzymatic hydrolysis of lignocellulosic biomass for biorefinery applications: A review. Bioresour Technol 360. https://doi.org/10.1016/j.biortech.2022.127517
10.1016/j.biortech.2022.127517Saleem, M. (2022) Possibility of utilizing agriculture biomass as a renewable and sustainable future energy source. Heliyon 8. https://doi.org/10.1016/j.heliyon.2022.e08905
10.1016/j.heliyon.2022.e08905Sarker, T. R., Pattnaik, F., Nanda, S., Dalai, A. K., Meda, V., Naik, S. (2021) Hydrothermal pretreatment technologies for lignocellulosic biomass: A review of steam explosion and subcritical water hydrolysis. Chemosphere 284. https://doi.org/10.1016/j.chemosphere.2021.131372
10.1016/j.chemosphere.2021.131372Sathendra, E. R., Praveenkumar, R., Gurunathan, B., Chozhavendhan, S., Jayakumar, M. (2022) Refining lignocellulose of second-generation biomass waste for bioethanol production. Biofuels and Bioenergy: Opportunities and Challenges 87-110. https://doi.org/10.1016/B978-0-323-85269-2.00016-2
10.1016/B978-0-323-85269-2.00016-2Sette, C. R., Hansted, A. L. S., Novaes, E., Lima, P. A. F. e., Rodrigues, A. C., Santos, D. R. de S., Yamaji, F. M. (2018) Energy enhancement of the eucalyptus bark by briquette production. Ind Crop Prod 122:209-213. https://doi.org/10.1016/j.indcrop.2018.05.057
10.1016/j.indcrop.2018.05.057Shah, H. H., Amin, M., Iqbal, A., Nadeem, I., Kalin, M., Soomar, A. M., Galal, A. M. (2023) A review on gasification and pyrolysis of waste plastics. Front Chem 10. https://doi.org/10.3389/fchem.2022.960894
10.3389/fchem.2022.960894Shokravi, H., Shokravi, Z., Heidarrezaei, M., Ong, H. C., Rahimian Koloor, S. S., Petrů, M., Lau, W. J., Ismail, A. F. (2021) Fourth generation biofuel from genetically modified algal biomass: Challenges and future directions. Chemosphere 285. https://doi.org/10.1016/j.chemosphere.2021.131535
10.1016/j.chemosphere.2021.131535Sikarwar, V. S., Pohořelý, M., Meers, E., Skoblia, S., Moško, J., Jeremiáš, M. (2021) Potential of coupling anaerobic digestion with thermochemical technologies for waste valorization. Fuel 294. https://doi.org/10.1016/j.fuel.2021.120533
10.1016/j.fuel.2021.120533Sims, R. E. H., Hastings, A., Schlamadinger, B., Taylor, G., Smith, P. (2006) Energy crops: Current status and future prospects. Glob Chang Biol 12:2054-2076. https://doi.org/10.1111/j.1365-2486.2006.01163.x
10.1111/j.1365-2486.2006.01163.xSingh, D., Sharma, D., Soni, S. L., Inda, C. S., Sharma, S., Sharma, P. K., Jhalani, A. (2021) A comprehensive review of biodiesel production from waste cooking oil and its use as fuel in compression ignition engines: 3rd generation cleaner feedstock. J Clean Prod 307. https://doi.org/10.1016/j.jclepro.2021.127299
10.1016/j.jclepro.2021.127299Srinivasan, S. (2009) The food v. fuel debate: A nuanced view of incentive structures. Renew Energy 34:950-954. https://doi.org/10.1016/j.renene.2008.08.015
10.1016/j.renene.2008.08.015Sukumaran, R. K., Mathew, A. K., Sankar, M. (n.d.) Solid Acid-Mediated Hydrolysis of Biomass for Producing Biofuels.
Šulgan, B., Labovský, J., Labovská, Z. (2020) Multi-aspect comparison of ethyl acetate production pathways: Reactive distillation process integration and intensification via mechanical and chemical approach. Processes 8:1-32. https://doi.org/10.3390/pr8121618
10.3390/pr8121618Świątek, K., Gaag, S., Klier, A., Kruse, A., Sauer, J., Steinbach, D. (2020) Acid hydrolysis of lignocellulosic biomass: Sugars and furfurals formation. Catalysts 10. https://doi.org/10.3390/catal10040437
10.3390/catal10040437Syu, M. J. (2001) Biological production of 2,3-butanediol. Appl Microbiol Biotechnol 55:10-18. https://doi.org/10.1007/s002530000486
10.1007/s002530000486Taherzadeh, M. J., Karimi, K. (2007) Enzyme-based ethanol. Bioresources 2.
10.15376/biores.2.4.707-738Tan, H., Lee, C. T., Ong, P. Y., Wong, K. Y., Bong, C. P. C., Li, C., Gao, Y. (2021) A Review On The Comparison Between Slow Pyrolysis And Fast Pyrolysis On The Quality Of Lignocellulosic And Lignin-Based Biochar. IOP Conf Ser: Mater Sci Eng 1051:012075. https://doi.org/10.1088/1757-899x/1051/1/012075
10.1088/1757-899X/1051/1/012075Tápparo, D. C., Viancelli, A., Amaral, A. C. do, Fongaro, G., Steinmetz, R. L. R., Magri, M. E., Barardi, C. R. M., Kunz, A. (2020) Sanitary effectiveness and biogas yield by anaerobic co-digestion of swine carcasses and manure. Environ Technol 41:682-690. https://doi.org/10.1080/09593330.2018.1508256
10.1080/09593330.2018.1508256Tomás-Pejó, E., Alvira, P., Ballesteros, M., Negro, M. J. (2011) Pretreatment technologies for lignocellulose-to-bioethanol conversion. Biofuels 149-176. https://doi.org/10.1016/B978-0-12-385099-7.00007-3
10.1016/B978-0-12-385099-7.00007-3Tomczyk, A., Sokołowska, Z., Boguta, P. (2020) Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev Environ Sci Biotechnol 19:191-215. https://doi.org/10.1007/s11157-020-09523-3
10.1007/s11157-020-09523-3Tripathi, M., Sahu, J. N., Ganesan, P. (2016) Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew Sustain Energy Rev 55:467-481. https://doi.org/10.1016/j.rser.2015.10.122
10.1016/j.rser.2015.10.122Tursi, A. (2019) A review on biomass: Importance, chemistry, classification, and conversion. Biofuel Res J 6:962-979. https://doi.org/10.18331/BRJ2019.6.2.3
10.18331/BRJ2019.6.2.3Vassilev, S. V., Baxter, D., Andersen, L. K., Vassileva, C. G. (2010) An overview of the chemical composition of biomass. Fuel 89:913-933. https://doi.org/10.1016/j.fuel.2009.10.022
10.1016/j.fuel.2009.10.022Vassilev, S. V., Baxter, D., Andersen, L. K., Vassileva, C. G. (2013b) An overview of the composition and application of biomass ash. Part 1. Phase-mineral and chemical composition and classification. Fuel 105:40-76. https://doi.org/10.1016/j.fuel.2012.09.041
10.1016/j.fuel.2012.09.041Vassilev, S. V., Baxter, D., Andersen, L. K., Vassileva, C. G., Morgan, T. J. (2012) An overview of the organic and inorganic phase composition of biomass. Fuel 94:1-33. https://doi.org/10.1016/j.fuel.2011.09.030
10.1016/j.fuel.2011.09.030Vassilev, S. V., Baxter, D., Vassileva, C. G. (2013a) An overview of the behaviour of biomass during combustion: Part I. Phase-mineral transformations of organic and inorganic matter. Fuel 112:391-449. https://doi.org/10.1016/j.fuel.2013.05.043
10.1016/j.fuel.2013.05.043Vassilev, S. V., Baxter, D., Vassileva, C. G. (2014) An overview of the behaviour of biomass during combustion: Part II. Ash fusion and ash formation mechanisms of biomass types. Fuel 117:152-183. https://doi.org/10.1016/j.fuel.2013.09.024
10.1016/j.fuel.2013.09.024Vassilev, S. V., Vassileva, C. G., Vassilev, V. S. (2015) Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview. Fuel 158:330-350. https://doi.org/10.1016/j.fuel.2015.05.050
10.1016/j.fuel.2015.05.050Victoria Bisset (2023, July 29) The U.N. warns 'an era of global boiling' has started. What does that mean? The Washington Post.
Walker, L. P., Wilson, D. B. (1991) Enzymatic hydrolysis of cellulose: an overview. Bioresour Technol 36:3-14.
10.1016/0960-8524(91)90095-2Wang, C., Peng, J., Li, H., Bi, X. T., Legros, R., Lim, C. J., Sokhansanj, S. (2013) Oxidative torrefaction of biomass residues and densification of torrefied sawdust to pellets. Bioresour Technol 127:318-325. https://doi.org/10.1016/j.biortech.2012.09.092
10.1016/j.biortech.2012.09.092Wang, L., Li, Y., Yi, X., Yang, F., Wang, D., Han, H. (2023) Dissimilatory manganese reduction facilitates synergistic cooperation of hydrolysis, acidogenesis, acetogenesis and methanogenesis via promoting microbial interaction during anaerobic digestion of waste activated sludge. Environ Res 218. https://doi.org/10.1016/j.envres.2022.114992
10.1016/j.envres.2022.114992Wang, Q., Sun, S., Zhang, X., Liu, H., Sun, B., Guo, S. (2021) Influence of air oxidative and non-oxidative torrefaction on the chemical properties of corn stalk. Bioresour Technol 332. https://doi.org/10.1016/j.biortech.2021.125120
10.1016/j.biortech.2021.125120Wang, S., Copeland, L. (2015) Effect of Acid Hydrolysis on Starch Structure and Functionality: A Review. Crit Rev Food Sci Nutr 55:1081-1097. https://doi.org/10.1080/10408398.2012.684551
10.1080/10408398.2012.684551Wang, Z., Li, H., Lim, C. J., Grace, J. R. (2018) Oxidative torrefaction of spruce-pine-fir sawdust in a slot-rectangular spouted bed reactor. Energy Convers Manag 174:276-287. https://doi.org/10.1016/j.enconman.2018.08.035
10.1016/j.enconman.2018.08.035Wijffels, R. H., Barbosa, M. J., Eppink, M. H. M. (2010) Microalgae for the production of bulk chemicals and biofuels. Energy Convers Manag 4:287-295. https://doi. org/10.1002/bbb/215
10.1002/bbb.215Wood, B. E., Aldrich, H. C., Ingram, L. O. (1997) Ultrasound stimulates ethanol production during the simultaneous saccharification and fermentation of mixed waste office paper. Biotechnol Prog 13:232-237.
10.1021/bp970027vWu, D., Wei, Z., Mohamed, T. A., Zheng, G., Qu, F., Wang, F., Zhao, Y., Song, C. (2022) Lignocellulose biomass bioconversion during composting: Mechanism of action of lignocellulase, pretreatment methods and future perspectives. Chemosphere 286. https://doi.org/10.1016/j.chemosphere.2021.131635
10.1016/j.chemosphere.2021.131635Wu, H., Fu, Q., Giles, R., Bartle, J. (2008) Production of mallee biomass in Western Australia: Energy balance analysis. Energy Fuels 22:190-198. https://doi.org/10.1021/ef7002969
10.1021/ef7002969Xiong, Z., Wang, Y., Syed-Hassan, S. S. A., Hu, X., Han, H., Su, S., Xu, K., Jiang, L., Guo, J., Berthold, E. E. S., Hu, S., Xiang, J. (2018) Effects of heating rate on the evolution of bio-oil during its pyrolysis. Energy Conv Manag 163:420-427. https://doi.org/10.1016/j.enconman.2018.02.078
10.1016/j.enconman.2018.02.078Xu, J., Mustafa, A. M., Lin, H., Choe, U. Y., Sheng, K. (2018) Effect of hydrochar on anaerobic digestion of dead pig carcass after hydrothermal pretreatment. Waste Manag 78:849-856. https://doi.org/10.1016/j.wasman.2018.07.003
10.1016/j.wasman.2018.07.003Yang, B., Dai, Z., Ding, S. Y., Wyman, C. E. (2011) Enzymatic hydrolysis of cellulosic biomass. Biofuels 2:421-449). https://doi.org/10.4155/bfs.11.116
10.4155/bfs.11.116Yang, Y., Brammer, J. G., Wright, D. G., Scott, J. A., Serrano, C., Bridgwater, A. V. (2017) Combined heat and power from the intermediate pyrolysis of biomass materials: performance, economics and environmental impact. Appl Energy 191:639-652. https://doi.org/10.1016/j.apenergy.2017.02.004
10.1016/j.apenergy.2017.02.004Yao, Z., You, S., Ge, T., Wang, C. H. (2018) Biomass gasification for syngas and biochar co-production: Energy application and economic evaluation. Appl Energy 209:43-55. https://doi.org/10.1016/j.apenergy.2017.10.077
10.1016/j.apenergy.2017.10.077Yilmaz, S., Selim, H. (2013) A review on the methods for biomass to energy conversion systems design. Renew Sustain Energy Rev 25:420-430. https://doi.org/10.1016/j.rser.2013.05.015
10.1016/j.rser.2013.05.015Zaini, I. N., Sophonrat, N., Sjöblom, K., Yang, W. (2021a) Creating values from biomass pyrolysis in Sweden: Co-production of H2, biocarbon and bio-oil. Processes 9:1-21. https://doi.org/10.3390/pr9030415
10.3390/pr9030415Zaini, I. N., Sophonrat, N., Sjöblom, K., Yang, W. (2021b) Creating values from biomass pyrolysis in Sweden: Co-production of H2, biocarbon and bio-oil. Processes 9:1-21. https://doi.org/10.3390/pr9030415
10.3390/pr9030415Zegada-Lizarazu, W., Monti, A. (2011) Energy crops in rotation. A review. Biomass Bioenergy 35:12-25. https://doi.org/10.1016/j.biombioe.2010.08.001
10.1016/j.biombioe.2010.08.001Zeng, X., Danquah, M. K., Chen, X. D., Lu, Y. (2011) Microalgae bioengineering: From CO2 fixation to biofuel production. Renew Sustain Energy Rev 15:3252-3260. https://doi.org/10.1016/j.rser.2011.04.014
10.1016/j.rser.2011.04.014Zhang, C., Ho, S. H., Chen, W. H., Fu, Y., Chang, J. S., Bi, X. (2019a) Oxidative torrefaction of biomass nutshells: Evaluations of energy efficiency as well as biochar transportation and storage. Appl Energy 235:428-441. https://doi.org/10.1016/j.apenergy.2018.10.090
10.1016/j.apenergy.2018.10.090Zhang, C., Wang, C., Cao, G., Chen, W. H., Ho, S. H. (2019b) Comparison and characterization of property variation of microalgal biomass with non-oxidative and oxidative torrefaction. Fuel 246:375-385. https://doi.org/10.1016/j.fuel.2019.02.139
10.1016/j.fuel.2019.02.139Zhang, Y., Zhao, Y., Gao, X., Li, B., Huang, J. (2015) Energy and exergy analyses of syngas produced from rice husk gasification in an entrained flow reactor. J Clean Prod 95:273-280. https://doi.org/10.1016/j.jclepro.2015.02.053
10.1016/j.jclepro.2015.02.053Zhang, Z., Ji, J. (2015) Waste pig carcasses as a renewable resource for production of biofuels. ACS Sustain Chem Eng 3:204-209. https://doi.org/10.1021/sc500591m
10.1021/sc500591mZhao, Z., Xian, M., Liu, M., Zhao, G. (2020) Biochemical routes for uptake and conversion of xylose by microorganisms. Biotechnol Biofuels 13. https://doi.org/10.1186/s13068-020-1662-x
10.1186/s13068-020-1662-xZheng, H., Wang, Y., Feng, X., Li, S., Leong, Y. K., Chang, J. S. (2022) Renewable biohydrogen production from straw biomass - Recent advances in pretreatment/hydrolysis technologies and future development. Int J Hydrogen Energy 47:37359-37373. https://doi.org/10.1016/j.ijhydene.2021.10.020
10.1016/j.ijhydene.2021.10.020Zheng, Y., Pan, Z., Zhang, R. (2009) Overview of biomass pretreatment for cellulosic ethanol production. INT J AGR BIOL ENG 2:51-68. https://doi.org/10.3965/j.issn.1934-6344.2009.03.051-068
Zhou, N., Zhang, Y., Wu, X., Gong, X., Wang, Q. (2011) Hydrolysis of Chlorella biomass for fermentable sugars in the presence of HCl and MgCl 2. Bioresour Technol 102:10158-10161. https://doi.org/10.1016/j.biortech.2011.08.051
10.1016/j.biortech.2011.08.051Zhu, L., O'Dwyer, J. P., Chang, V. S., Granda, C. B., Holtzapple, M. T. (2008) Structural features affecting biomass enzymatic digestibility. Bioresour Technol 99:3817-3828. https://doi.org/10.1016/j.biortech.2007.07.033
10.1016/j.biortech.2007.07.033Zhuang, X., Liu, J., Zhang, Q., Wang, C., Zhan, H., Ma, L. (2022) A review on the utilization of industrial biowaste via hydrothermal carbonization. Renew Sustain Energy Rev154. https://doi.org/10.1016/j.rser.2021.111877
10.1016/j.rser.2021.111877- Publisher :Agriculture and Life Sciences Research Institute, Kangwon National University
- Publisher(Ko) :강원대학교 농업생명과학대학 농업생명과학연구원
- Journal Title :Journal of Agricultural, Life and Environmental Sciences
- Journal Title(Ko) :농업생명환경연구
- Volume : 36
- No :3
- Pages :165-192
- Received Date : 2024-07-02
- Revised Date : 2024-08-01
- Accepted Date : 2024-09-09
- DOI :https://doi.org/10.22698/jales.20240015