All Issue

2024 Vol.36, Issue 3

Review Article

30 September 2024. pp. 165-192
Abstract
References
1

Acevedo, J. C., Posso, F. R., Durán, J. M., Arenas, E. (2018) Simulation of the gasification process of palm kernel shell using Aspen PLUS. J Phys Conf Ser 1126. https://doi.org/10.1088/1742-6596/1126/1/012010

10.1088/1742-6596/1126/1/012010
2

Act On The Promotion Of Saving And Recycling Of Resources (2017) Pub. L. No. 15101, Korea Legislation Research Institute.

3

Act on the Promotion of the Development, Use, and Diffusion of New and Renewable Energy (2023) Pub. L. No. Presidential Decree No. 32315, Korea Legislation Research Institute.

4

Al-Hotmani, O. M. A., Al-Obaidi, M. A. A., John, Y. M., Patel, R., Mujtaba, I. M. (2020) Scope and limitations of the mathematical models developed for the forward feed multi-effect distillation process-a review. Processes 8. https://doi.org/10.3390/PR8091174

10.3390/pr8091174
5

Angin, D. (2013) Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresour Technol 128:593-597. https://doi.org/10.1016/j.biortech.2012.10.150

10.1016/j.biortech.2012.10.150
6

Bach, Q. V., Skreiberg, O. (2016) Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction. Renew Sustain Energy Rev 54:665-677. https://doi.org/10.1016/j.rser.2015.10.014

10.1016/j.rser.2015.10.014
7

Balat, M., Balat, M., Kirtay, E., Balat, H. (2009) Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems. Energy Conv Manag 50:3147-3157. https://doi.org/10.1016/j.enconman.2009.08.014

10.1016/j.enconman.2009.08.014
8

Balu, E., Lee, U., Chung, J. N. (2015) High temperature steam gasification of woody biomass - A combined experimental and mathematical modeling approach. Int J Hydrogen Energy 40:14104-14115. https://doi.org/10.1016/j.ijhydene.2015.08.085

10.1016/j.ijhydene.2015.08.085
9

Basu, P. (2018) Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory (2nd edtion, Vol. 2nd). Academic Press.

10.1016/B978-0-12-812992-0.00007-8
10

Basu, P., Butler, J., Leon, M. A. (2011) Biomass co-firing options on the emission reduction and electricity generation costs in coal-fired power plants. Renew Energy 36:282-288. https://doi.org/10.1016/j.renene.2010.06.039

10.1016/j.renene.2010.06.039
11

Baxter, L. (2005) Biomass-coal co-combustion: Opportunity for affordable renewable energy. Fuel 84:1295-1302. https://doi.org/10.1016/j.fuel.2004.09.023

10.1016/j.fuel.2004.09.023
12

Becker, A., Katzen, F., Puè, A., Ielpi, L. (n.d.) MINI-REVIEW Xanthan gum biosynthesis and application: a biochemical /genetic perspective.

13

Bharathiraja, B., Sudharsana, T., Jayamuthunagai, J., Praveenkumar, R., Chozhavendhan, S., Iyyappan, J. (2018) Biogas production - A review on composition, fuel properties, feed stock and principles of anaerobic digestion. Renew Sustain Energy Rev 90:pp.570-582. https://doi.org/10.1016/j.rser.2018.03.093

10.1016/j.rser.2018.03.093
14

Blanco-Canqui, H. (2010) Energy crops and their implications on soil and environment. Agron J 102:403-419. https://doi.org/10.2134/agronj2009.0333

10.2134/agronj2009.0333
15

Boateng, A. A. (2020) Introduction. In Pyrolysis of Biomass for Fuels and Chemicals (pp.1-21). Elsevier. https://doi.org/10.1016/b978-0-12-818213-0.00001-1

10.1016/B978-0-12-818213-0.00001-1
16

Bondesson, P. M., Galbe, M. (2016) Process design of SSCF for ethanol production from steam-pretreated, acetic-acid-impregnated wheat straw. Biotechnol Biofuels 9. https://doi.org/10.1186/s13068-016-0635-6

10.1186/s13068-016-0635-6
17

Brachi, P., Chirone, R., Miccio, M., Ruoppolo, G. (2019) Fluidized bed torrefaction of biomass pellets: A comparison between oxidative and inert atmosphere. Powder Technol 357:97-107. https://doi.org/10.1016/j.powtec.2019.08.058

10.1016/j.powtec.2019.08.058
18

Bridgwater, A. V., Peacocke, G. V. C. (2000) Fast pyrolysis processes for biomass. Renew Sustain Energy Rev 4:1-73. www.elsevier.com/locate/rser

10.1016/S1364-0321(99)00007-6
19

Bridgwater, A. V., Peacocke, G. V. C. (n.d.) Fast pyrolysis processes for biomass. www.elsevier.com/locate/rser

20

Broda, M., Yelle, D. J., Serwańska, K. (2022) Bioethanol Production from Lignocellulosic Biomass-Challenges and Solutions. Molecules 27. https://doi.org/10.3390/molecules27248717

10.3390/molecules27248717
21

Cai, J., He, Y., Yu, X., Banks, S. W., Yang, Y., Zhang, X., Yu, Y., Liu, R., Bridgwater, A. V. (2017) Review of physicochemical properties and analytical characterization of lignocellulosic biomass. Renew Sustain Energy Rev 76:309-322. https://doi.org/10.1016/j.rser.2017.03.072

10.1016/j.rser.2017.03.072
22

Cardoen, D., Joshi, P., Diels, L., Sarma, P. M., Pant, D. (2015) Agriculture biomass in India: Part 1. Estimation and characterization. Resour Conserv Recycl 102:39-48. https://doi.org/10.1016/j.resconrec.2015.06.003

10.1016/j.resconrec.2015.06.003
23

Castaldi, M., van Deventer, J., Lavoie, J. M., Legrand, J., Nzihou, A., Pontikes, Y., Py, X., Vandecasteele, C., Vasudevan, P. T., Verstraete, W. (2017) Progress and Prospects in the Field of Biomass and Waste to Energy and Added-Value Materials. WASTE BIOMASS VALORI 8:1875-1884. https://doi.org/10.1007/s12649-017-0049-0

10.1007/s12649-017-0049-0
24

Chen, D., Chen, F., Cen, K., Cao, X., Zhang, J., Zhou, J. (2020) Upgrading rice husk via oxidative torrefaction: Characterization of solid, liquid, gaseous products and a comparison with non-oxidative torrefaction. Fuel 275. https://doi.org/10.1016/j.fuel.2020.117936

10.1016/j.fuel.2020.117936
25

Chen, H., Qiu, W. (2010) Key technologies for bioethanol production from lignocellulose. Biotechnol Adv 28:556-562. https://doi.org/10.1016/j.biotechadv.2010.05.005

10.1016/j.biotechadv.2010.05.005
26

Chen, L., Yang, K., Huang, J., Liu, P., Yang, J., Pan, Y., Qi, F., Jia, L. (2022) Experimental and kinetic study on flash pyrolysis of biomass via on-line photoionization mass spectrometry. Appl Energy Combust Sci 9. https://doi.org/10.1016/j.jaecs.2022.100057

10.1016/j.jaecs.2022.100057
27

Chen, W. H., Kuo, P. C. (2010) A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy 35:2580-2586. https://doi.org/10.1016/j.energy.2010.02.054

10.1016/j.energy.2010.02.054
28

Chen, W. H., Lu, K. M., Lee, W. J., Liu, S. H., Lin, T. C. (2014) Non-oxidative and oxidative torrefaction characterization and SEM observations of fibrous and ligneous biomass. Appl Energy 114:104-113. https://doi.org/10.1016/j.apenergy.2013.09.045

10.1016/j.apenergy.2013.09.045
29

Chen, W. H., Ye, S. C., Sheen, H. K. (2012) Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating. Bioresour Technol 118:195-203. https://doi.org/10.1016/j.biortech.2012.04.101

10.1016/j.biortech.2012.04.101
30

Cheng, J., Li, J., Zheng, L. (2021) Achievements and Perspectives in 1,4-Butanediol Production from Engineered Microorganisms. J Agric Food Chem 69:10480-10485). https://doi.org/10.1021/acs.jafc.1c03769

10.1021/acs.jafc.1c03769
31

Choi, H., Kim, Y. T., Tsang, Y. F., Lee, J. (2023) Integration of thermochemical conversion processes for waste-to-energy: A review. Korean J Chem Eng 40:1815-1821. https://doi.org/10.1007/s11814-023-1494-z

10.1007/s11814-023-1494-z
32

Choi, S. K., Choi, Y. S., Jeong, Y. W., Han, S. Y., Van Nguyen, Q. (2020) Simulation of the fast pyrolysis of coffee ground in a tilted-slide reactor. Energies 13. https://doi.org/10.3390/en13246605

10.3390/en13246605
33

Choudhury, H. A., Chakma, S., Moholkar, V. S. (2015) Biomass Gasification Integrated Fischer-Tropsch Synthesis: Perspectives, Opportunities and Challenges. Recent Advances in Thermochemical Conversion of Biomass 383-435. https://doi.org/10.1016/B978-0-444-63289-0.00014-4

10.1016/B978-0-444-63289-0.00014-4
34

Dai, J., Saayman, J., Grace, J. R., Ellis, N. (2015) Gasification of Woody Biomass. Annu Rev Chem Biomol Eng 6:77-99. https://doi.org/10.1146/annurev-chembioeng-061114-123310

10.1146/annurev-chembioeng-061114-123310
35

Dai, J., Sokhansanj, S., Grace, J. R., Bi, X., Lim, C. J., Melin, S. (2008) Overview and some issues related to co-firing biomass and coal. Can J Chem Eng 86:367-386. https://doi.org/10.1002/cjce.20052

10.1002/cjce.20052
36

Darvell, L. I., Jones, J. M., Gudka, B., Baxter, X. C., Saddawi, A., Williams, A., Malmgren, A. (2010) Combustion properties of some power station biomass fuels. Fuel 89:2881-2890. https://doi.org/10.1016/j.fuel.2010.03.003

10.1016/j.fuel.2010.03.003
37

Das, P. K., Sahoo, A., Dasu Veeranki, V. (2023a) Engineered yeasts for lignocellulosic bioethanol production. Advances in Yeast Biotechnology for Biofuels and Sustainability: Value-Added Products and Environmental Remediation Applications 47-72. https://doi.org/10.1016/B978-0-323-95449-5.00013-8

10.1016/B978-0-323-95449-5.00013-8
38

Das, P. K., Sahoo, A., Dasu Veeranki, V. (2023b) Engineered yeasts for lignocellulosic bioethanol production. Advances in Yeast Biotechnology for Biofuels and Sustainability: Value-Added Products and Environmental Remediation Applications 47-72. https://doi.org/10.1016/B978-0-323-95449-5.00013-8

10.1016/B978-0-323-95449-5.00013-8
39

De Oliveira, J. L., da Silva, J. N., Martins, M. A., Pereira, E. G., da Conceição Trindade Bezerra e Oliveira, M. (2018) Gasification of waste from coffee and eucalyptus production as an alternative source of bioenergy in Brazil. Sustain Energy Technol Assessments 27:159-166. https://doi.org/10.1016/j.seta.2018.04.005

10.1016/j.seta.2018.04.005
40

De Vrieze, J., Verstraete, W. (2016) Perspectives for microbial community composition in anaerobic digestion: from abundance and activity to connectivity. Environ Microbiol 18:2797-2809) https://doi.org/10.1111/1462-2920.13437

10.1111/1462-2920.13437
41

Demirbas, A. (2004) Combustion characteristics of different biomass fuels. PROG ENERG COMBUST 30:219-230. https://doi.org/10.1016/j.pecs.2003.10.004

10.1016/j.pecs.2003.10.004
42

Demirbaş, A., Arin, G. (2002) An overview of biomass pyrolysis. Energy Sources 24:471-482. https://doi.org/10.1080/00908310252889979

10.1080/00908310252889979
43

Dinesha, P., Kumar, S., Rosen, M. A. (2019) Biomass Briquettes as an Alternative Fuel: A Comprehensive Review. Energy Technol 7. https://doi.org/10.1002/ente.201801011

10.1002/ente.201801011
44

Dong, P. (2011) Ethanol production from lignocellulosic biomass. Xiandai Huagong/Mod Chem Ind 31:40-44. https://doi.org/10.5772/intechopen.86437

10.5772/intechopen.86437
45

Enforcement Decree of the Act on the Sustainable Use of Timbers (2018) Pub. L. No. 29424, Ministry of Government Legislation.

46

Euh, S. H., Kafle, S., Lee, S. Y., Lee, C. G., Jo, L., Choi, Y. S., Oh, J. H., Kim, D. H. (2017) Establishment and validation of tar fouling mechanism in wood pellet boiler using kinetic models. Appl Therm Eng 127:165-175. https://doi.org/10.1016/j.applthermaleng.2017.07.212

10.1016/j.applthermaleng.2017.07.212
47

Faria, S., Vieira, P. A., Resende, M. M., França, F. P., Cardoso, V. L. (2009) A comparison between shaker and bioreactor performance based on the kinetic parameters of xanthan gum production. Appl Biochem Biotechnol 156:45-58. https://doi.org/10.1007/s12010-008-8485-8

10.1007/s12010-008-8485-8
48

Fatih Demirbas, M. (2009). Biorefineries for biofuel upgrading: A critical review. Applied Energy 86. https://doi.org/10.1016/j.apenergy.2009.04.043

10.1016/j.apenergy.2009.04.043
49

Fernandes, I. J., Calheiro, D., Kieling, A. G., Moraes, C. A. M., Rocha, T. L. A. C., Brehm, F. A., Modolo, R. C. E. (2016) Characterization of rice husk ash produced using different biomass combustion techniques for energy. Fuel 165:351-359. https://doi.org/10.1016/j.fuel.2015.10.086

10.1016/j.fuel.2015.10.086
50

Fuller, W. S. (2004) PULPING | Chip Preparation. J. Burley (Ed.), Encyclopedia of Forest Sciences 883-899. https://doi.org/10.1016/B0-12-145160-7/00126-5

10.1016/B0-12-145160-7/00126-5
51

Gan, Y. Y., Chen, W. H., Ong, H. C., Sheen, H. K., Chang, J. S., Hsieh, T. H., Ling, T. C. (2020a) Effects of dry and wet torrefaction pretreatment on microalgae pyrolysis analyzed by TG-FTIR and double-shot Py-GC/MS. Energy 210. https://doi.org/10.1016/j.energy.2020.118579

10.1016/j.energy.2020.118579
52

Gan, Y. Y., Ong, H. C., Chen, W. H., Sheen, H. K., Chang, J. S., Chong, C. T., Ling, T. C. (2020b) Microwave-assisted wet torrefaction of microalgae under various acids for coproduction of biochar and sugar. J Clean Prod 253. https://doi.org/10.1016/j.jclepro.2019.119944

10.1016/j.jclepro.2019.119944
53

Gao, X., Zhang, Y., Li, B., Yu, X. (2016) Model development for biomass gasification in an entrained flow gasifier using intrinsic reaction rate submodel. Energy Conv Manag 108:120-131. https://doi.org/10.1016/j.enconman.2015.10.070

10.1016/j.enconman.2015.10.070
54

Ghenai, C., Inayat, A. (2019) Sustainable Alternative Syngas Fuel. IntechOpen. https://doi.org/10.5772/intechopen.78190

10.5772/intechopen.78190
55

Gnanasekaran, L., Priya, A. K., Thanigaivel, S., Hoang, T. K. A., Soto-Moscoso, M. (2023) The conversion of biomass to fuels via cutting-edge technologies: Explorations from natural utilization systems. Fuel 331. https://doi.org/10.1016/j.fuel.2022.125668

10.1016/j.fuel.2022.125668
56

Goria, K., Kothari, R., Singh, A., Singh, H. M., Tyagi, V. V. (2022) Biohydrogen: potential applications, approaches, and hurdles to overcome. Handbook of Biofuels 399-418. https://doi.org/10.1016/B978-0-12-822810-4.00020-8

10.1016/B978-0-12-822810-4.00020-8
57

Guda, V. K., Steele, P. H., Penmetsa, V. K., Li, Q. (2015) Fast Pyrolysis of Biomass: Recent Advances in Fast Pyrolysis Technology. Recent Advances in Thermochemical Conversion of Biomass 177-211. https://doi.org/10.1016/B978-0-444-63289-0.00007-7

10.1016/B978-0-444-63289-0.00007-7
58

Gunay, A., Karadag, D. (2015) Recent developments in the anaerobic digestion of olive mill effluents. Process Biochem 50:1893-1903. https://doi.org/10.1016/j.procbio.2015.07.008

10.1016/j.procbio.2015.07.008
59

Halim, R., Rupasinghe, T. W. T., Tull, D. L., Webley, P. A. (2013) Mechanical cell disruption for lipid extraction from microalgal biomass. Bioresour Technol 140:53-63. https://doi.org/10.1016/j.biortech.2013.04.067

10.1016/j.biortech.2013.04.067
60

Hang, Y. D., Woodams, E. E. (2001) Enzymatic Production of Reducing Sugars from Corn Cobs. LWT 34:140-142. https://doi.org/10.1006/fstl.2000.0733

10.1006/fstl.2000.0733
61

Hays, M. D., Fine, P. M., Geron, C. D., Kleeman, M. J., Gullett, B. K. (2005) Open burning of agricultural biomass: Physical and chemical properties of particle-phase emissions. Atmos Environ 39:6747-6764. https://doi.org/10.1016/j.atmosenv.2005.07.072

10.1016/j.atmosenv.2005.07.072
62

HE, Z., PAGLIARI, P. H., WALDRIP, H. M. (2016) Applied and Environmental Chemistry of Animal Manure: A Review. Pedosphere 26:779-816. https://doi.org/10.1016/S1002-0160(15)60087-X

10.1016/S1002-0160(15)60087-X
63

Hernández, A. B., Okonta, F., Freeman, N. (2017) Sewage sludge charcoal production by N2- and CO2-torrefaction. J Environ Chem Eng 5:4406-4414. https://doi.org/10.1016/j.jece.2017.08.001

10.1016/j.jece.2017.08.001
64

Hornung, A. (2013) Intermediate pyrolysis of biomass. Biomass Combustion Science, Technology and Engineering 172-186. https://doi.org/10.1533/9780857097439.2.172

10.1533/9780857097439.2.172
65

Hornung, A., Schröder, E. (2014a) Production of Biochar and Activated Carbon via Intermediate Pyrolysis-Recent Studies for Non-Woody Biomass. http://booksupport.wiley.com

10.1002/9781118693643.ch17
66

Hornung, A., Schröder, E. (2014b) Production of Biochar and Activated Carbon via Intermediate Pyrolysis-Recent Studies for Non-Woody Biomass. http://booksupport.wiley.com

10.1002/9781118693643.ch17
67

Hossain, S. M. Z. (2019) Biochemical Conversion of Microalgae Biomass into Biofuel. Chem Eng Technol 42:2594-2607. https://doi.org/10.1002/ceat.201800605

10.1002/ceat.201800605
68

Huang, C., Jiang, X., Shen, X., Hu, J., Tang, W., Wu, X., Ragauskas, A., Jameel, H., Meng, X., Yong, Q. (2022) Lignin-enzyme interaction: A roadblock for efficient enzymatic hydrolysis of lignocellulosics. Renew Sustain Energy Rev 154. https://doi.org/10.1016/j.rser.2021.111822

10.1016/j.rser.2021.111822
69

International Renewable Energy Agency (2024) RENEWABLE ENERGY STATISTICS 2024 STATISTIQUES D'ÉNERGIE RENOUVELABLE 2024 ESTADÍSTICAS DE ENERGÍA RENOVABLE 2024. www.irena.org

70

Iranmahboob, J., Nadim, F., Monemi, S. (2002) Optimizing acid-hydrolysis: a critical step for production of ethanol from mixed wood chips. Biomass Bioenergy 22:401-404. https://doi.org/10.1016/S0961-9534(02)00016-8

10.1016/S0961-9534(02)00016-8
71

Isemin, R., Klimov, D., Larina, O., Sytchev, G., Zaichenko, V., Milovanov, O. (2019) Application of torrefaction for recycling bio-waste formed during anaerobic digestion. Fuel 243:230-239. https://doi.org/10.1016/j.fuel.2019.01.119

10.1016/j.fuel.2019.01.119
72

Jenkins, B. M., Baxter, L. L., Koppejan, J. (2019) Biomass Combustion. In Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power (2nd edition). John Wiley & Sons .

10.1002/9781119417637.ch3
73

Jennings, E. W., Schell, D. J. (2011) Conditioning of dilute-acid pretreated corn stover hydrolysate liquors by treatment with lime or ammonium hydroxide to improve conversion of sugars to ethanol. Bioresour Technol 102:1240-1245. https://doi.org/10.1016/j.biortech.2010.08.024

10.1016/j.biortech.2010.08.024
74

Jia, X., Qin, X., Tian, X., Zhao, Y., Yang, T., Huang, J. (2021) Inoculating with the microbial agents to start up the aerobic composting of mushroom residue and wood chips at low temperature. J Environ Chem Eng 9. https://doi.org/10.1016/j.jece.2021.105294

10.1016/j.jece.2021.105294
75

Jonsson, E. (2016) AN EVALUATION OF HEAT AND BIOCHAR PRODUCTION IN SWEDEN.

76

Ju, Y. M., Oh, K. C., Kim., Lee, K. Y., Kim, D. H. (2018) Performance Analysis of a Vacuum Pyrolysis System. J Biosyst Eng 43:14-20. https://doi.org/10.5307/JBE.2018.43.1.014

77

Kanagasabai, M., Maruthai, K., Thangavelu, V. (2019) Simultaneous Saccharification and Fermentation and Factors Influencing Ethanol Production in SSF Process. In Y. Yun (Ed.), Alcohol Fuels. IntechOpen. https://doi.org/10.5772/intechopen.86480

10.5772/intechopen.86480
78

Kang, S., Fu, J., Zhang, G. (2018) From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis. Renew Sustain Energy Rev 94:340-362. https://doi.org/10.1016/j.rser.2018.06.016

10.1016/j.rser.2018.06.016
79

Karaffa, L., Sándor, E., Fekete, E., Szentirmai, A. (2001) The biochemistry of citric acid of accumulation by Aspergillus niger (a review). ACTA MICROBIOL IMM H 48:429-440.

10.1556/AMicr.48.2001.3-4.11
80

Kayo, C., Tojo, S., Iwaoka, M., Matsumoto, T. (2013). Evaluation of Biomass Production and Utilization Systems. Research Approaches to Sustainable Biomass Systems 309-346. https://doi.org/10.1016/B978-0-12-404609-2.00014-3

10.1016/B978-0-12-404609-2.00014-3
81

Kim, K. H., Kim, J. Y., Cho, T. S., Choi, J. W. (2012) Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresour Technol 118:158-162. https://doi.org/10.1016/j.biortech.2012.04.094

10.1016/j.biortech.2012.04.094
82

Kim, M. J., Kim, S. H. (2019) Evaluation of Biogas Production Performance During the Anaerobic Digestion of Lipids with Four or More Double Bonds. J Biosyst Eng 44:37-40. https://doi.org/10.1007/s42853-019-00004-2

10.1007/s42853-019-00004-2
83

Kim, S. J., Park, S., Oh, K. C., Ju, Y. M., Cho, L. H., Kim, D. H. (2021) Development of surface torrefaction process to utilize agro-byproducts as an energy source. Energy 233:121192. https://doi.org/10.1016/j.energy.2021.121192

10.1016/j.energy.2021.121192
84

Kim, S.-J., Park, S.-Y., Cho, L.-H., Oh, K.-C., Jeon, Y.-K., Lee, C.-G., Kim, D.-H. (2022) Evaluation of Fuel Characteristics of Kenaf for Energy Source Utilization and Fuel Quality Improvement through Torrefaction. J Agric & Life Sci 56:119-127. https://doi.org/10.14397/jals.2022.56.3.119

10.14397/jals.2022.56.3.119
85

Koppram, R., Nielsen, F., Albers, E., Lambert, A., Wännström, S., Welin, L., Zacchi, G., Olsson, L. (2013) Simultaneous saccharification and co-fermentation for bioethanol production using corncobs at lab, PDU and demo scales. Biotechnol Biofuels 6. https://doi.org/10.1186/1754-6834-6-2

10.1186/1754-6834-6-2
86

Koyama, M., Yamamoto, S., Ishikawa, K., Ban, S., Toda, T. (2014) Anaerobic digestion of submerged macrophytes: Chemical composition and anaerobic digestibility. Ecol Eng 69:304-309. https://doi.org/10.1016/j.ecoleng.2014.05.013

10.1016/j.ecoleng.2014.05.013
87

Kumar, A., Kumar, N., Baredar, P., Shukla, A. (2015) A review on biomass energy resources, potential, conversion and policy in India. Renew Sustain Energy Rev 45:530-539. https://doi.org/10.1016/j.rser.2015.02.007

10.1016/j.rser.2015.02.007
88

Kumar, B., Verma, P. (2021) Biomass-based biorefineries: An important architype towards a circular economy. Fuel 288. https://doi.org/10.1016/j.fuel.2020.119622

10.1016/j.fuel.2020.119622
89

Kumar, G., Dharmaraja, J., Arvindnarayan, S., Shoban, S., Bakonyi, P., Saratale, G. D., Nemestóthy, N., Bélafi-Bakó, K., Yoon, J. J., Kim, S. H. (2019) A comprehensive review on thermochemical, biological, biochemical and hybrid conversion methods of bio-derived lignocellulosic molecules into renewable fuels. Fuel 251:352-367. https://doi.org/10.1016/j.fuel.2019.04.049

10.1016/j.fuel.2019.04.049
90

Lei, Z., Li, C., Chen, B. (2003) Extractive distillation: A review. Sep Purif Rev 32:121-213. https://doi.org/10.1081/SPM-120026627

10.1081/SPM-120026627
91

Lenihan, P., Orozco, A., O'Neill, E., Ahmad, M. N. M., Rooney, D. W., Walker, G. M. (2010) Dilute acid hydrolysis of lignocellulosic biomass. J Chem Eng 156:395-403. https://doi.org/10.1016/j.cej.2009.10.061

10.1016/j.cej.2009.10.061
92

Li, Q., Qiao, W., Wang, X., Takayanagi, K., Shofie, M., Li, Y. Y. (2015) Kinetic characterization of thermophilic and mesophilic anaerobic digestion for coffee grounds and waste activated sludge. Waste Manag 36:77-85. https://doi.org/10.1016/j.wasman.2014.11.016

10.1016/j.wasman.2014.11.016
93

Li, W., Zhou, Z., Wang, D. (2023) Recent Advances, Challenges, and Metabolic Engineering Strategies in L-Cysteine Biosynthesis. Fermentation 9:802. https://doi.org/10.3390/fermentation9090802

10.3390/fermentation9090802
94

Li, Y., Jin, Y., Borrion, A., Li, H., Li, J. (2017) Effects of organic composition on mesophilic anaerobic digestion of food waste. Bioresour Technol 244:213-224. https://doi.org/10.1016/j.biortech.2017.07.006

10.1016/j.biortech.2017.07.006
95

Liguori, R., Faraco, V. (2016) Biological processes for advancing lignocellulosic waste biorefinery by advocating circular economy. Bioresour Technol 215:13-20. https://doi.org/10.1016/j.biortech.2016.04.054

10.1016/j.biortech.2016.04.054
96

Limtong, S., Sringiew, C., Yongmanitchai, W. (2007) Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresour Technol 98:3367-3374. https://doi.org/10.1016/j.biortech.2006.10.044

10.1016/j.biortech.2006.10.044
97

Liu, L., Zhang, Z., Wang, J., Fan, Y., Shi, W., Liu, X., Shun, Q. (2019) Simultaneous saccharification and co-fermentation of corn stover pretreated by H2O2 oxidative degradation for ethanol production. Energy 168:946-952. https://doi.org/10.1016/j.energy.2018.11.132

10.1016/j.energy.2018.11.132
98

Liu, Z. H., Chen, H. Z. (2016) Simultaneous saccharification and co-fermentation for improving the xylose utilization of steam exploded corn stover at high solid loading. Bioresour Technol 201:15-26. https://doi.org/10.1016/j.biortech.2015.11.023

10.1016/j.biortech.2015.11.023
99

Lohani, S. P., Havukainen, J. (2018) Anaerobic Digestion: Factors Affecting Anaerobic Digestion Process. Energy, Environment, and Sustainability 343-359. https://doi.org/10.1007/978-981-10-7413-4_18

10.1007/978-981-10-7413-4_18
100

Lozano, F. J., Lozano, R. (2018) Assessing the potential sustainability benefits of agricultural residues: Biomass conversion to syngas for energy generation or to chemicals production. J Clean Prod 172:4162-4169. https://doi.org/10.1016/j.jclepro.2017.01.037

10.1016/j.jclepro.2017.01.037
101

Lynam, J. G., Coronella, C. J., Yan, W., Reza, M. T., Vasquez, V. R. (2011) Acetic acid and lithium chloride effects on hydrothermal carbonization of lignocellulosic biomass. Bioresour Technol 102:6192-6199. https://doi.org/10.1016/j.biortech.2011.02.035

10.1016/j.biortech.2011.02.035
102

Makareviciene, V., Sendzikiene, E. (2022) Application of Microalgae Biomass for Biodiesel Fuel Production. Energies 15. https://doi.org/10.3390/en15114178

10.3390/en15114178
103

Maneerung, T., Li, X., Li, C., Dai, Y., Wang, C. H. (2018) Integrated downdraft gasification with power generation system and gasification bottom ash reutilization for clean waste-to-energy and resource recovery system. J Clean Prod 188:69-79. https://doi.org/10.1016/j.jclepro.2018.03.287

10.1016/j.jclepro.2018.03.287
104

Manogaran, M. D., Shamsuddin, R., Mohd Yusoff, M. H., Lay, M., Siyal, A. A. (2022) A review on treatment processes of chicken manure. Cleaner Circ Bioecon 2:100013. https://doi.org/10.1016/j.clcb.2022.100013

10.1016/j.clcb.2022.100013
105

Martín, J., Santos, J. L., Aparicio, I., Alonso, E. (2015) Pharmaceutically active compounds in sludge stabilization treatments: Anaerobic and aerobic digestion, wastewater stabilization ponds and composting. Sci Total Environ 503-504, 97-104. https://doi.org/10.1016/j.scitotenv.2014.05.089

10.1016/j.scitotenv.2014.05.089
106

Mat Aron, N. S., Khoo, K. S., Chew, K. W., Show, P. L., Chen, W. H., Nguyen, T. H. P. (2020) Sustainability of the four generations of biofuels - A review. Int J Energy Res 44:9266-9282. https://doi.org/10.1002/er.5557

10.1002/er.5557
107

Mckendry, P. (2002a) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37-46.

10.1016/S0960-8524(01)00118-3
108

Mckendry, P. (2002b) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83:47-54.

10.1016/S0960-8524(01)00119-5
109

Mishra, B., Mohanta, Y. K., Reddy, C. N., Reddy, S. D. M., Mandal, S. K., Yadavalli, R., Sarma, H. (2023) Valorization of agro-industrial biowaste to biomaterials: An innovative circular bioeconomy approach. Circ Econ 2:100050. https://doi.org/10.1016/j.cec.2023.100050

10.1016/j.cec.2023.100050
110

Moreno, A. D., Tomás-Pejó, E., Ibarra, D., Ballesteros, M., Olsson, L. (2013) Fed-batch SSCF using steam-exploded wheat straw at high dry matter consistencies and a xylose-fermenting Saccharomyces cerevisiae strain: effect of laccase supplementation. http://www.biotechnologyforbiofuels.com/content/6/1/160

10.1186/1754-6834-6-160
111

Morgano, M. T., Bergfeldt, B., Leibold, H., Richter, F., Stapf, D. (2018) Intermediate pyrolysis of agricultural waste: A decentral approach towards circular economy. Chem Eng Trans 65:649-654. https://doi.org/10.3303/CET1865109

112

Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., Ladisch, M. (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673-686. https://doi.org/10.1016/j.biortech.2004.06.025

10.1016/j.biortech.2004.06.025
113

Ndaba, B., Chiyanzu, I., Marx, S. (2015) N-Butanol derived from biochemical and chemical routes: A review. Appl Biotechnol Rep 8:1-9. https://doi.org/10.1016/j.btre.2015.08.001

10.1016/j.btre.2015.08.001
114

Nepal, R., Kim, H. J., Poudel, J., Oh, S. C. (2022) A study on torrefaction of spent coffee ground to improve its fuel properties. Fuel 318. https://doi.org/10.1016/j.fuel.2022.123643

10.1016/j.fuel.2022.123643
115

Nizami, A. S., Rehan, M., Waqas, M., Naqvi, M., Ouda, O. K. M., Shahzad, K., Miandad, R., Khan, M. Z., Syamsiro, M., Ismail, I. M. I., Pant, D. (2017) Waste biorefineries: Enabling circular economies in developing countries. Bioresour Technol 241:1101-1117. Elsevier Ltd. https://doi.org/10.1016/j.biortech.2017.05.097

10.1016/j.biortech.2017.05.097
116

Nunes, L. J. R., Matias, J. C. O., Catalão, J. P. S. (2016) Biomass combustion systems: A review on the physical and chemical properties of the ashes. Renew Sustain Energy Rev 53:235-242. https://doi.org/10.1016/j.rser.2015.08.053

10.1016/j.rser.2015.08.053
117

Obi, O. F. (2015) Effect of briquetting temperature on the properties of biomass briquettes. Afr J Sci Technol Innov Dev 7:386-394. https://doi.org/10.1080/20421338.2015.1096508

10.1080/20421338.2015.1096508
118

Oh, K. C., Park, S. Y., Kim, S. J., Choi, Y. S., Lee, C. G., Cho, L. H., Kim, D. H. (2019) Development and validation of mass reduction model to optimize torrefaction for agricultural byproduct biomass. Renew Energy 139:988-999. https://doi.org/10.1016/j.renene.2019.02.106

10.1016/j.renene.2019.02.106
119

Ohimain, E. I., Izah, S. C. (2017) A review of biogas production from palm oil mill effluents using different configurations of bioreactors. Renew Sustain Energy Rev 70:242-253. https://doi.org/10.1016/j.rser.2016.11.221

10.1016/j.rser.2016.11.221
120

Okolie, J. A., Nanda, S., Dalai, A. K., Kozinski, J. A. (2021) Chemistry and Specialty Industrial Applications of Lignocellulosic Biomass. Waste Biomass Valorization 12:2145-2169. https://doi.org/10.1007/s12649-020-01123-0

10.1007/s12649-020-01123-0
121

Olofsson, K., Palmqvist, B., Lidén, G. (2010) Improving simultaneous saccharification and co-fermentation of pretreated wheat straw using both enzyme and substrate feeding. http://www.biotechnologyforbiofuels.com/content/3/1/17

10.1186/1754-6834-3-17
122

Orisaleye, J. I., Jekayinfa, S. O., Dittrich, C., Obi, O. F., Pecenka, R. (2023) Effects of Feeding Speed and Temperature on Properties of Briquettes from Poplar Wood Using a Hydraulic Briquetting Press. Resources 12. https://doi.org/10.3390/resources12010012

10.3390/resources12010012
123

Park, H. J., Jeon, J. K., Suh, D. J., Suh, Y. W., Heo, H. S., Park, Y. K. (2011) Catalytic Vapor Cracking for Improvement of Bio-Oil Quality. Catalysis Surveys from Asia 15:161-180. https://doi.org/10.1007/s10563-011-9119-7

10.1007/s10563-011-9119-7
124

Park, J. Y., Park, M. S., Lee, Y. C., Yang, J. W. (2015) Advances in direct transesterification of algal oils from wet biomass. Bioresour Technol 184:267-275. https://doi.org/10.1016/j.biortech.2014.10.089

10.1016/j.biortech.2014.10.089
125

Park, S. Y., Kim, S. J., Oh, K. C., Cho, L. H., Jeon, Y. K., Kim, D. H. (2023a) Evaluation of the Optimal Conditions for Oxygen-Rich and Oxygen-Lean Torrefaction of Forestry Byproduct as a Fuel. Energies 16. https://doi.org/10.3390/en16124763

10.3390/en16124763
126

Park, S., Jeong, H. R., Shin, Y. A., Kim, S. J., Ju, Y. M., Oh, K. C., Cho, L. H., Kim, D. (2021) Performance optimisation of fuel pellets comprising pepper stem and coffee grounds through mixing ratios and torrefaction. Energies 14. https://doi.org/10.3390/en14154667

10.3390/en14154667
127

Park, S., Kim, S. J., Oh, K. C., Cho, L., Jeon, Y. K., Kim, D. H. (2023b) Identification of differences and comparison of fuel characteristics of torrefied agro-byproducts under oxidative conditions. Heliyon 9. https://doi.org/10.1016/j.heliyon.2023.e16746

10.1016/j.heliyon.2023.e16746
128

Park, S., Kim, S. J., Oh, K. C., Cho, L., Kim, M. J., Jeong, I. S., Lee, C. G., Kim, D. H. (2020) Investigation of agro-byproduct pellet properties and improvement in pellet quality through mixing. Energy 190:116380. https://doi.org/10.1016/j.energy.2019.116380

10.1016/j.energy.2019.116380
129

Park, S., Kim, S. J., Oh, K. C., Jeon, Y. K., Kim, Y., Cho, Ay. Y., Lee, D., Jang, C. S., Kim, D. H. (2023c) Biochar from Agro-byproducts for Use as a Soil Amendment and Solid Biofuel. J Biosyst Eng https://doi.org/10.1007/s42853-023-00175-z

10.1007/s42853-023-00175-z
130

Pasalari, H., Gholami, M., Rezaee, A., Esrafili, A., Farzadkia, M. (2021) Perspectives on microbial community in anaerobic digestion with emphasis on environmental parameters: A systematic review. Chemosphere 270. https://doi.org/10.1016/j.chemosphere.2020.128618

10.1016/j.chemosphere.2020.128618
131

Pattiya, A. (2017) Fast pyrolysis. Direct Thermochemical Liquefaction for Energy Applications 3-28. https://doi.org/10.1016/B978-0-08-101029-7.00001-1

10.1016/B978-0-08-101029-7.00001-1
132

Paul, T. W., Serpil, B. (1996) The influence of temperature and heating rate on the slow pyrolysis of biomass. Renew Energy 7:233-250. https://doi.org/10.1016/0960-1481(96)00006-7

10.1016/0960-1481(96)00006-7
133

Rajan, K., Carrier, D. J. (2014) Effect of dilute acid pretreatment conditions and washing on the production of inhibitors and on recovery of sugars during wheat straw enzymatic hydrolysis. Biomass Bioenergy 62:222-227. https://doi.org/10.1016/j.biombioe.2014.01.013

10.1016/j.biombioe.2014.01.013
134

Roman, K., Rzodkiewicz, W., Hryniewicz, M. (2023) Analysis of Forest Biomass Wood Briquette Structure According to Different Tests of Density. Energies 16. https://doi.org/10.3390/en16062850

10.3390/en16062850
135

Ross, R. P., Morgan, S., Hill, C. (2002) Preservation and fermentation: past, present and future. Int J Food Microbiol 79:3-16. www.elsevier.com/locate/ijfoodmicro

10.1016/S0168-1605(02)00174-5
136

Rousset, P., MacEdo, L., Commandré, J. M., Moreira, A. (2012a) Biomass torrefaction under different oxygen concentrations and its effect on the composition of the solid by-product. J Anal Appl Pyrolysis 96:86-91. https://doi.org/10.1016/j.jaap.2012.03.009

10.1016/j.jaap.2012.03.009
137

Rousset, P., MacEdo, L., Commandré, J. M., Moreira, A. (2012b) Biomass torrefaction under different oxygen concentrations and its effect on the composition of the solid by-product. J Anal Appl Pyrolysis 96:86-91. https://doi.org/10.1016/j.jaap.2012.03.009

10.1016/j.jaap.2012.03.009
138

Ruiz, J. A., Juárez, M. C., Morales, M. P., Muñoz, P., Mendívil, M. A. (2013) Biomass gasification for electricity generation: Review of current technology barriers. Renew Sustain Energy Rev 18:174-183. https://doi.org/10.1016/j.rser.2012.10.021

10.1016/j.rser.2012.10.021
139

Ryu, C., Yang, Y. Bin, Khor, A., Yates, N. E., Sharifi, V. N., Swithenbank, J. (2006) Effect of fuel properties on biomass combustion: Part I. Experiments - Fuel type, equivalence ratio and particle size. Fuel 85:1039-1046. https://doi.org/10.1016/j.fuel.2005.09.019

10.1016/j.fuel.2005.09.019
140

Saadon, S., Uemura, Y., Mansor, N. (2014) Torrefaction in the Presence of Oxygen and Carbon Dioxide: The Effect on Yield of Oil Palm Kernel Shell. Procedia Chem 9:194-201. https://doi.org/10.1016/j.proche.2014.05.023

10.1016/j.proche.2014.05.023
141

Saini, J. K., Himanshu, Hemansi, Kaur, A., Mathur, A. (2022) Strategies to enhance enzymatic hydrolysis of lignocellulosic biomass for biorefinery applications: A review. Bioresour Technol 360. https://doi.org/10.1016/j.biortech.2022.127517

10.1016/j.biortech.2022.127517
142

Saleem, M. (2022) Possibility of utilizing agriculture biomass as a renewable and sustainable future energy source. Heliyon 8. https://doi.org/10.1016/j.heliyon.2022.e08905

10.1016/j.heliyon.2022.e08905
143

Sarker, T. R., Pattnaik, F., Nanda, S., Dalai, A. K., Meda, V., Naik, S. (2021) Hydrothermal pretreatment technologies for lignocellulosic biomass: A review of steam explosion and subcritical water hydrolysis. Chemosphere 284. https://doi.org/10.1016/j.chemosphere.2021.131372

10.1016/j.chemosphere.2021.131372
144

Sathendra, E. R., Praveenkumar, R., Gurunathan, B., Chozhavendhan, S., Jayakumar, M. (2022) Refining lignocellulose of second-generation biomass waste for bioethanol production. Biofuels and Bioenergy: Opportunities and Challenges 87-110. https://doi.org/10.1016/B978-0-323-85269-2.00016-2

10.1016/B978-0-323-85269-2.00016-2
145

Sette, C. R., Hansted, A. L. S., Novaes, E., Lima, P. A. F. e., Rodrigues, A. C., Santos, D. R. de S., Yamaji, F. M. (2018) Energy enhancement of the eucalyptus bark by briquette production. Ind Crop Prod 122:209-213. https://doi.org/10.1016/j.indcrop.2018.05.057

10.1016/j.indcrop.2018.05.057
146

Shah, H. H., Amin, M., Iqbal, A., Nadeem, I., Kalin, M., Soomar, A. M., Galal, A. M. (2023) A review on gasification and pyrolysis of waste plastics. Front Chem 10. https://doi.org/10.3389/fchem.2022.960894

10.3389/fchem.2022.960894
147

Shokravi, H., Shokravi, Z., Heidarrezaei, M., Ong, H. C., Rahimian Koloor, S. S., Petrů, M., Lau, W. J., Ismail, A. F. (2021) Fourth generation biofuel from genetically modified algal biomass: Challenges and future directions. Chemosphere 285. https://doi.org/10.1016/j.chemosphere.2021.131535

10.1016/j.chemosphere.2021.131535
148

Sikarwar, V. S., Pohořelý, M., Meers, E., Skoblia, S., Moško, J., Jeremiáš, M. (2021) Potential of coupling anaerobic digestion with thermochemical technologies for waste valorization. Fuel 294. https://doi.org/10.1016/j.fuel.2021.120533

10.1016/j.fuel.2021.120533
149

Sims, R. E. H., Hastings, A., Schlamadinger, B., Taylor, G., Smith, P. (2006) Energy crops: Current status and future prospects. Glob Chang Biol 12:2054-2076. https://doi.org/10.1111/j.1365-2486.2006.01163.x

10.1111/j.1365-2486.2006.01163.x
150

Singh, D., Sharma, D., Soni, S. L., Inda, C. S., Sharma, S., Sharma, P. K., Jhalani, A. (2021) A comprehensive review of biodiesel production from waste cooking oil and its use as fuel in compression ignition engines: 3rd generation cleaner feedstock. J Clean Prod 307. https://doi.org/10.1016/j.jclepro.2021.127299

10.1016/j.jclepro.2021.127299
151

Srinivasan, S. (2009) The food v. fuel debate: A nuanced view of incentive structures. Renew Energy 34:950-954. https://doi.org/10.1016/j.renene.2008.08.015

10.1016/j.renene.2008.08.015
152

Sukumaran, R. K., Mathew, A. K., Sankar, M. (n.d.) Solid Acid-Mediated Hydrolysis of Biomass for Producing Biofuels.

153

Šulgan, B., Labovský, J., Labovská, Z. (2020) Multi-aspect comparison of ethyl acetate production pathways: Reactive distillation process integration and intensification via mechanical and chemical approach. Processes 8:1-32. https://doi.org/10.3390/pr8121618

10.3390/pr8121618
154

Świątek, K., Gaag, S., Klier, A., Kruse, A., Sauer, J., Steinbach, D. (2020) Acid hydrolysis of lignocellulosic biomass: Sugars and furfurals formation. Catalysts 10. https://doi.org/10.3390/catal10040437

10.3390/catal10040437
155

Syu, M. J. (2001) Biological production of 2,3-butanediol. Appl Microbiol Biotechnol 55:10-18. https://doi.org/10.1007/s002530000486

10.1007/s002530000486
156

Taherzadeh, M. J., Karimi, K. (2007) Enzyme-based ethanol. Bioresources 2.

10.15376/biores.2.4.707-738
157

Tan, H., Lee, C. T., Ong, P. Y., Wong, K. Y., Bong, C. P. C., Li, C., Gao, Y. (2021) A Review On The Comparison Between Slow Pyrolysis And Fast Pyrolysis On The Quality Of Lignocellulosic And Lignin-Based Biochar. IOP Conf Ser: Mater Sci Eng 1051:012075. https://doi.org/10.1088/1757-899x/1051/1/012075

10.1088/1757-899X/1051/1/012075
158

Tápparo, D. C., Viancelli, A., Amaral, A. C. do, Fongaro, G., Steinmetz, R. L. R., Magri, M. E., Barardi, C. R. M., Kunz, A. (2020) Sanitary effectiveness and biogas yield by anaerobic co-digestion of swine carcasses and manure. Environ Technol 41:682-690. https://doi.org/10.1080/09593330.2018.1508256

10.1080/09593330.2018.1508256
159

Tomás-Pejó, E., Alvira, P., Ballesteros, M., Negro, M. J. (2011) Pretreatment technologies for lignocellulose-to-bioethanol conversion. Biofuels 149-176. https://doi.org/10.1016/B978-0-12-385099-7.00007-3

10.1016/B978-0-12-385099-7.00007-3
160

Tomczyk, A., Sokołowska, Z., Boguta, P. (2020) Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev Environ Sci Biotechnol 19:191-215. https://doi.org/10.1007/s11157-020-09523-3

10.1007/s11157-020-09523-3
161

Tripathi, M., Sahu, J. N., Ganesan, P. (2016) Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew Sustain Energy Rev 55:467-481. https://doi.org/10.1016/j.rser.2015.10.122

10.1016/j.rser.2015.10.122
162

Tursi, A. (2019) A review on biomass: Importance, chemistry, classification, and conversion. Biofuel Res J 6:962-979. https://doi.org/10.18331/BRJ2019.6.2.3

10.18331/BRJ2019.6.2.3
163

Vassilev, S. V., Baxter, D., Andersen, L. K., Vassileva, C. G. (2010) An overview of the chemical composition of biomass. Fuel 89:913-933. https://doi.org/10.1016/j.fuel.2009.10.022

10.1016/j.fuel.2009.10.022
164

Vassilev, S. V., Baxter, D., Andersen, L. K., Vassileva, C. G. (2013b) An overview of the composition and application of biomass ash. Part 1. Phase-mineral and chemical composition and classification. Fuel 105:40-76. https://doi.org/10.1016/j.fuel.2012.09.041

10.1016/j.fuel.2012.09.041
165

Vassilev, S. V., Baxter, D., Andersen, L. K., Vassileva, C. G., Morgan, T. J. (2012) An overview of the organic and inorganic phase composition of biomass. Fuel 94:1-33. https://doi.org/10.1016/j.fuel.2011.09.030

10.1016/j.fuel.2011.09.030
166

Vassilev, S. V., Baxter, D., Vassileva, C. G. (2013a) An overview of the behaviour of biomass during combustion: Part I. Phase-mineral transformations of organic and inorganic matter. Fuel 112:391-449. https://doi.org/10.1016/j.fuel.2013.05.043

10.1016/j.fuel.2013.05.043
167

Vassilev, S. V., Baxter, D., Vassileva, C. G. (2014) An overview of the behaviour of biomass during combustion: Part II. Ash fusion and ash formation mechanisms of biomass types. Fuel 117:152-183. https://doi.org/10.1016/j.fuel.2013.09.024

10.1016/j.fuel.2013.09.024
168

Vassilev, S. V., Vassileva, C. G., Vassilev, V. S. (2015) Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview. Fuel 158:330-350. https://doi.org/10.1016/j.fuel.2015.05.050

10.1016/j.fuel.2015.05.050
169

Victoria Bisset (2023, July 29) The U.N. warns 'an era of global boiling' has started. What does that mean? The Washington Post.

170

Walker, L. P., Wilson, D. B. (1991) Enzymatic hydrolysis of cellulose: an overview. Bioresour Technol 36:3-14.

10.1016/0960-8524(91)90095-2
171

Wang, C., Peng, J., Li, H., Bi, X. T., Legros, R., Lim, C. J., Sokhansanj, S. (2013) Oxidative torrefaction of biomass residues and densification of torrefied sawdust to pellets. Bioresour Technol 127:318-325. https://doi.org/10.1016/j.biortech.2012.09.092

10.1016/j.biortech.2012.09.092
172

Wang, L., Li, Y., Yi, X., Yang, F., Wang, D., Han, H. (2023) Dissimilatory manganese reduction facilitates synergistic cooperation of hydrolysis, acidogenesis, acetogenesis and methanogenesis via promoting microbial interaction during anaerobic digestion of waste activated sludge. Environ Res 218. https://doi.org/10.1016/j.envres.2022.114992

10.1016/j.envres.2022.114992
173

Wang, Q., Sun, S., Zhang, X., Liu, H., Sun, B., Guo, S. (2021) Influence of air oxidative and non-oxidative torrefaction on the chemical properties of corn stalk. Bioresour Technol 332. https://doi.org/10.1016/j.biortech.2021.125120

10.1016/j.biortech.2021.125120
174

Wang, S., Copeland, L. (2015) Effect of Acid Hydrolysis on Starch Structure and Functionality: A Review. Crit Rev Food Sci Nutr 55:1081-1097. https://doi.org/10.1080/10408398.2012.684551

10.1080/10408398.2012.684551
175

Wang, Z., Li, H., Lim, C. J., Grace, J. R. (2018) Oxidative torrefaction of spruce-pine-fir sawdust in a slot-rectangular spouted bed reactor. Energy Convers Manag 174:276-287. https://doi.org/10.1016/j.enconman.2018.08.035

10.1016/j.enconman.2018.08.035
176

Wijffels, R. H., Barbosa, M. J., Eppink, M. H. M. (2010) Microalgae for the production of bulk chemicals and biofuels. Energy Convers Manag 4:287-295. https://doi. org/10.1002/bbb/215

10.1002/bbb.215
177

Wood, B. E., Aldrich, H. C., Ingram, L. O. (1997) Ultrasound stimulates ethanol production during the simultaneous saccharification and fermentation of mixed waste office paper. Biotechnol Prog 13:232-237.

10.1021/bp970027v
178

Wu, D., Wei, Z., Mohamed, T. A., Zheng, G., Qu, F., Wang, F., Zhao, Y., Song, C. (2022) Lignocellulose biomass bioconversion during composting: Mechanism of action of lignocellulase, pretreatment methods and future perspectives. Chemosphere 286. https://doi.org/10.1016/j.chemosphere.2021.131635

10.1016/j.chemosphere.2021.131635
179

Wu, H., Fu, Q., Giles, R., Bartle, J. (2008) Production of mallee biomass in Western Australia: Energy balance analysis. Energy Fuels 22:190-198. https://doi.org/10.1021/ef7002969

10.1021/ef7002969
180

Xiong, Z., Wang, Y., Syed-Hassan, S. S. A., Hu, X., Han, H., Su, S., Xu, K., Jiang, L., Guo, J., Berthold, E. E. S., Hu, S., Xiang, J. (2018) Effects of heating rate on the evolution of bio-oil during its pyrolysis. Energy Conv Manag 163:420-427. https://doi.org/10.1016/j.enconman.2018.02.078

10.1016/j.enconman.2018.02.078
181

Xu, J., Mustafa, A. M., Lin, H., Choe, U. Y., Sheng, K. (2018) Effect of hydrochar on anaerobic digestion of dead pig carcass after hydrothermal pretreatment. Waste Manag 78:849-856. https://doi.org/10.1016/j.wasman.2018.07.003

10.1016/j.wasman.2018.07.003
182

Yang, B., Dai, Z., Ding, S. Y., Wyman, C. E. (2011) Enzymatic hydrolysis of cellulosic biomass. Biofuels 2:421-449). https://doi.org/10.4155/bfs.11.116

10.4155/bfs.11.116
183

Yang, E. S. (2022) 2022 Yearbook of Energy Statistics. http://www.kesis.net

184

Yang, Y., Brammer, J. G., Wright, D. G., Scott, J. A., Serrano, C., Bridgwater, A. V. (2017) Combined heat and power from the intermediate pyrolysis of biomass materials: performance, economics and environmental impact. Appl Energy 191:639-652. https://doi.org/10.1016/j.apenergy.2017.02.004

10.1016/j.apenergy.2017.02.004
185

Yao, Z., You, S., Ge, T., Wang, C. H. (2018) Biomass gasification for syngas and biochar co-production: Energy application and economic evaluation. Appl Energy 209:43-55. https://doi.org/10.1016/j.apenergy.2017.10.077

10.1016/j.apenergy.2017.10.077
186

Yilmaz, S., Selim, H. (2013) A review on the methods for biomass to energy conversion systems design. Renew Sustain Energy Rev 25:420-430. https://doi.org/10.1016/j.rser.2013.05.015

10.1016/j.rser.2013.05.015
187

Zaini, I. N., Sophonrat, N., Sjöblom, K., Yang, W. (2021a) Creating values from biomass pyrolysis in Sweden: Co-production of H2, biocarbon and bio-oil. Processes 9:1-21. https://doi.org/10.3390/pr9030415

10.3390/pr9030415
188

Zaini, I. N., Sophonrat, N., Sjöblom, K., Yang, W. (2021b) Creating values from biomass pyrolysis in Sweden: Co-production of H2, biocarbon and bio-oil. Processes 9:1-21. https://doi.org/10.3390/pr9030415

10.3390/pr9030415
189

Zegada-Lizarazu, W., Monti, A. (2011) Energy crops in rotation. A review. Biomass Bioenergy 35:12-25. https://doi.org/10.1016/j.biombioe.2010.08.001

10.1016/j.biombioe.2010.08.001
190

Zeng, X., Danquah, M. K., Chen, X. D., Lu, Y. (2011) Microalgae bioengineering: From CO2 fixation to biofuel production. Renew Sustain Energy Rev 15:3252-3260. https://doi.org/10.1016/j.rser.2011.04.014

10.1016/j.rser.2011.04.014
191

Zhang, C., Ho, S. H., Chen, W. H., Fu, Y., Chang, J. S., Bi, X. (2019a) Oxidative torrefaction of biomass nutshells: Evaluations of energy efficiency as well as biochar transportation and storage. Appl Energy 235:428-441. https://doi.org/10.1016/j.apenergy.2018.10.090

10.1016/j.apenergy.2018.10.090
192

Zhang, C., Wang, C., Cao, G., Chen, W. H., Ho, S. H. (2019b) Comparison and characterization of property variation of microalgal biomass with non-oxidative and oxidative torrefaction. Fuel 246:375-385. https://doi.org/10.1016/j.fuel.2019.02.139

10.1016/j.fuel.2019.02.139
193

Zhang, Y., Zhao, Y., Gao, X., Li, B., Huang, J. (2015) Energy and exergy analyses of syngas produced from rice husk gasification in an entrained flow reactor. J Clean Prod 95:273-280. https://doi.org/10.1016/j.jclepro.2015.02.053

10.1016/j.jclepro.2015.02.053
194

Zhang, Z., Ji, J. (2015) Waste pig carcasses as a renewable resource for production of biofuels. ACS Sustain Chem Eng 3:204-209. https://doi.org/10.1021/sc500591m

10.1021/sc500591m
195

Zhao, Z., Xian, M., Liu, M., Zhao, G. (2020) Biochemical routes for uptake and conversion of xylose by microorganisms. Biotechnol Biofuels 13. https://doi.org/10.1186/s13068-020-1662-x

10.1186/s13068-020-1662-x
196

Zheng, H., Wang, Y., Feng, X., Li, S., Leong, Y. K., Chang, J. S. (2022) Renewable biohydrogen production from straw biomass - Recent advances in pretreatment/hydrolysis technologies and future development. Int J Hydrogen Energy 47:37359-37373. https://doi.org/10.1016/j.ijhydene.2021.10.020

10.1016/j.ijhydene.2021.10.020
197

Zheng, Y., Pan, Z., Zhang, R. (2009) Overview of biomass pretreatment for cellulosic ethanol production. INT J AGR BIOL ENG 2:51-68. https://doi.org/10.3965/j.issn.1934-6344.2009.03.051-068

198

Zhou, N., Zhang, Y., Wu, X., Gong, X., Wang, Q. (2011) Hydrolysis of Chlorella biomass for fermentable sugars in the presence of HCl and MgCl 2. Bioresour Technol 102:10158-10161. https://doi.org/10.1016/j.biortech.2011.08.051

10.1016/j.biortech.2011.08.051
199

Zhu, L., O'Dwyer, J. P., Chang, V. S., Granda, C. B., Holtzapple, M. T. (2008) Structural features affecting biomass enzymatic digestibility. Bioresour Technol 99:3817-3828. https://doi.org/10.1016/j.biortech.2007.07.033

10.1016/j.biortech.2007.07.033
200

Zhuang, X., Liu, J., Zhang, Q., Wang, C., Zhan, H., Ma, L. (2022) A review on the utilization of industrial biowaste via hydrothermal carbonization. Renew Sustain Energy Rev154. https://doi.org/10.1016/j.rser.2021.111877

10.1016/j.rser.2021.111877
Information
  • Publisher :Agriculture and Life Sciences Research Institute, Kangwon National University
  • Publisher(Ko) :강원대학교 농업생명과학대학 농업생명과학연구원
  • Journal Title :Journal of Agricultural, Life and Environmental Sciences
  • Journal Title(Ko) :농업생명환경연구
  • Volume : 36
  • No :3
  • Pages :165-192
  • Received Date : 2024-07-02
  • Revised Date : 2024-08-01
  • Accepted Date : 2024-09-09