All Issue

2024 Vol.36, Issue 2 Preview Page

Research Article

30 June 2024. pp. 152-163
Abstract
References
1

Arnold, J. G., Srinivasan, R., Muttiah, R. S., Williams, J. R. (1998) Large area hydrologic modeling and assessment part I: model development 1. J Am Water Resour Assoc 34:73-89.

10.1111/j.1752-1688.1998.tb05961.x
2

Bicknell, B. R., Imhoff, J. C., Kittle Jr, J. L., Donigian Jr, A. S., Johanson, R. C. (1997) Hydrological simulation program-FORTRAN user's manual for version 11. Environmental Protection Agency Report No. EPA/600/R-97/080. US Environmental Protection Agency, Athens, Ga.

3

Breiman, L. (2001). Random forests. Machine learning 45:5-32.

10.1023/A:1010933404324
4

Chen, T., Guestrin, C. (2016) Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining 785-794.

10.1145/2939672.2939785
5

Choi, J. K., Son, J. K., Lee, H. J., Kim, Y. (2012) Runoff Characteristics of Total-N and Total-P in Upland Surface Runoff Treated with Livestock Manure Compost. J Korean Soc Agric Eng 54:29-37. http://dx.doi.org/10.5389/KSAE.2012.54.6.029

10.5389/KSAE.2012.54.6.029
6

Francesconi, W., Smith, D. R., Heathman, G. C., Wang, X., Williams, C. O. (2014) Monitoring and APEX modeling of no-till and reduced-till in tile-drained agricultural landscapes for water quality. Trans of the ASABE 57:777-789.

10.13031/trans.57.10332
7

García-Feal, O., González-Cao, J., Fernández-Nóvoa, D., Astray Dopazo, G., Gómez-Gesteira, M. (2022) Comparison of machine learning techniques for reservoir outflow forecasting. Nat Hazards Earth Syst Sci Discuss 22:1-27. https://doi.org/10.5194/nhess-22-3859-2022

10.5194/nhess-22-3859-2022
8

Gassman, P. W., Williams, J. R., Wang, X., Saleh, A., Osei, E., Hauck, L., Izaurralde, R. C., Flowers, J. (2010) The Agricultural Policy/Environmental eXtender (APEX) model: An emerging tool for landscape and watershed environmental analyses. Trans of the ASABE 53:711-740.

10.13031/2013.30078
9

Geurts, P., Ernst, D., Wehenkel, L. (2006) Extremely randomized trees. Machine learning 63:3-42.

10.1007/s10994-006-6226-1
10

Hong, J., Lee, S., Bae, J. H., Lee, J., Park, W. J., Lee, D., Kim, J., Lim, K. J. (2020) Development and evaluation of the combined machine learning models for the prediction of dam inflow. Water 12:2927. https://doi.org/10.3390/w12102927

10.3390/w12102927
11

Jeong, Y., Lee, D., Kang, H., Jang, W. S., Hong, J., Lim, K. J. (2022) Efficiency Evaluation of Vegetative Filter Strip for Non-point Source Pollutant at Dense Upland Areas - Focused on Non-point Source Management Area Mandae, Gaa, and Jaun Basins -. J Korean Soc Agric Eng 64:1-10. https://doi.org/10.5389/KSAE.2022.64.4.001

12

Joo, J. H., Lee, S. B. (2011) Assessment of Nutrient Losses in Different Slope Highland Soils Amended with Livestock Manure Compost. Korean Soc Soil Sci Fert 44:361-367. https://doi.org/10.7745/KJSSF.2011.44.3.361

10.7745/KJSSF.2011.44.3.361
13

Jun, K., Kwon, D., KI, S. J., (2020) Comparing the Performance of Machine Learning Algorithms in Predicting River Water Quality and Quantity. KSWST Jour Wat Treat 28:49-57. https://doi.org/10.17640/KSWST.2020.28.1.49

10.17640/KSWST.2020.28.1.49
14

Ke, G., Meng Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T. Y. (2017) LightGBM: a highly efficient gradient boosting decision tree. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS'17). Curran Associates Inc., Red Hook, NY, USA, 3149-3157.

15

Khosravi, K., Golkarian, A., Tiefenbacher, J. P. (2022) Using optimized deep learning to predict daily streamflow: A comparison to common machine learning algorithms. Water Resour Manag 36:699-716. https://doi.org/10.1007/s11269-021-03051-7

10.1007/s11269-021-03051-7
16

Kim, M. K., Kwon, S. I., Jung, G. B., Hong, S. C., Chae, M. J., Yun, S. G., So, K. H. (2013) Small-Scale Pond Effects on Reducing Pollutants Load from a Paddy Field. Korean J Environ Agric 32:355-358. http://dx.doi.org/10.5338/KJEA.2013.32.4.355

10.5338/KJEA.2013.32.4.355
17

Koo, J. Y., Kim, J., Choi, S. K., Kim, M. K., Jeong, J., Lim, K. J. (2017) Construction of Database for Application of APEX Model in Korea and Evaluation of Applicability to Highland Field. J Korean Soc Agric. Eng 59:89-100. https://doi.org/10.5389/KSAE.2017.59.6.089

18

Lee, J. H., Choi, B. R., Cho, G. G., Jang, E. K., Kim, Y. R., Ji, J. H., Na, H. S., Lee, S. E., Ku, H. H. (2020a) Effect of controlled-release coated fertilizer on yield and nitrogen use efficiency in a red pepper cultivated field. Korean J Soil Sci Fert 53:519-527. https://doi.org/10.7745/KJSSF.2020.53.4.519

10.7745/KJSSF.2020.53.4.519
19

Lee, S. G., Jang, J. R., Choi, K. S. (2018) Simulation of sediment reduction effects of VFS in uplands of Saemangeum watershed. J Korea Water Resour Assoc 51:535-542. doi:10.3741/JKWRA.2018.51.6.535

20

Lee, S. I., Shin, J. Y., Shin, M. H., Ju, S. H., Seo, J. Y., Park, W. J., Choi, J. D. (2017) Characteristics of non-point pollutant runoff in highland field fields through long-term monitoring. J Korean Soc Agric Eng 59:85-96. https://doi.org/10.5389/KSAE.2017.59.4.085

21

Lee, S., Kim, J., Bae, J. H., Lee, G., Yang, D., Hong, J., Lim, K. J. (2023) Development of Multi-Inflow Prediction Ensemble Model Based on Auto-Sklearn Using Combined Approach: Case Study of Soyang River Dam. Hydrology 10:90. https://doi.org/10.3390/hydrology10040090

10.3390/hydrology10040090
22

Lee, S., Kim, J., Lee, G., Hong, J., Bae, J. H., Lim, K. J. (2021) Prediction of aquatic ecosystem health indices through machine learning models using the WGAN-based data augmentation method. Sustain 13:10435. https://doi.org/10.3390/su131810435

10.3390/su131810435
23

Lee, S.-M., Park, K.-D., Kim, I.-K. (2020b) Comparison of machine learning algorithms for Chl-a prediction in the middle of Nakdong River (focusing on water quality and quantity factors). J Korean Soc Water Wastewater 34:277-288. https://doi.org/10.11001/jksww.2020.34.4.277

10.11001/jksww.2020.34.4.277
24

Ministry of Environment (ME) (2019) Development of prediction technology of surface soil environmental change based on Big data, Sejong, Korea.

25

Nash, J. E., Sutcliffe, J. V. (1970) River flow forecasting through c onceptual models part I-A discussion of principles. J Hydrol 10:282-290. https://doi.org/10.1016/0022-1694(70)90255-6

10.1016/0022-1694(70)90255-6
26

Natekin, A., Knoll, A. (2013) Gradient boosting machines, a tutorial. Front Neurorobot 7:21. https://doi.org/10.3389/fnbot.2013.00021

10.3389/fnbot.2013.0002124409142PMC3885826
27

National Institute of Agricultural Sciences (NIAS) (2020) Study on Status of Nutrient Discharge from Agricultural Areas and Its Environmental Impacts due to Climate Change. Natl Inst Agric Sci Wanju, Korea.

28

Park, P. N., Cho, Y. C. (2023). Evaluation of Removal Efficiency of Pollutants in Constructed Wetlands for Controlling Nonpoint Sources in the Daechung Reservoir Watershed. Korean Soc Limnol 56:127-139. https://doi.org/10.11614/KSL.2023.56.2.127

10.11614/KSL.2023.56.2.127
29

So, H., Jang, T., Kim, D. H., Seol, D. M., Yoon, K. (2018) Surface Cover Effect for Reducing Nitrogen Load in Organic Farming Fields using APEX Model. J Korean Soc Agric Eng 60:55-67. https://doi.org/10.5389/KSAE.2018.60.5.55

30

Song, Y. Y., Ying, L. U. (2015) Decision tree methods: applications for classification and prediction. Shanghai Arch Psychiatry 27:130-135. https://doi.org/10.11919/j.issn.1002-0829.215044

31

Steglich, E. M., Osorio, J., Doro, J., Jeong, J., Williams, J. R. (2023) Agricultural Policy/Environmental eXtender Model User's Manual. AgriLIFE research, Temple, Texas.

32

Valerio, C., De Stefano, L., Martínez-Muñoz, G., Garrido, A. (2021) A machine learning model to assess the ecosystem response to water policy measures in the Tagus River Basin (Spain). Sci Total Environ 750:141252. https://doi.org/10.1016/j.scitotenv.2020.141252

10.1016/j.scitotenv.2020.14125233182174
33

Williams, J. R., Izaurralde, R. C. (2006) The APEX model. In Watershed models. Singh, V.P. and D.K. Frevert, eds. Boca Raton, FL: CRC Press, Taylor & Francis, 437-482.

10.1201/9781420037432.ch18
34

Williams, J. R., Jones, C. A., Dyke, P. T. (1984) A modeling approach to determining the relationship between erosion and soil productivity. Trans. of the ASAE 27:129-144.

10.13031/2013.32748
35

Woo, S. Y., Jung, C. G., Lee, J. W., Kim, S. J. (2019) Evaluation of watershed scale aquatic ecosystem health by SWAT modeling and random forest technique. Sustain 11:3397. https://doi.org/10.3390/su11123397

10.3390/su11123397
Information
  • Publisher :Agriculture and Life Sciences Research Institute, Kangwon National University
  • Publisher(Ko) :강원대학교 농업생명과학대학 농업생명과학연구원
  • Journal Title :Journal of Agricultural, Life and Environmental Sciences
  • Journal Title(Ko) :농업생명환경연구
  • Volume : 36
  • No :2
  • Pages :152-163
  • Received Date : 2024-04-16
  • Revised Date : 2024-06-14
  • Accepted Date : 2024-06-17