All Issue

2022 Vol.34, Issue 2

Review Article

31 July 2022. pp. 97-117
Abdulridha, J., Ampatzidis, Y., Qureshi, J., Roberts, P. (2020) Laboratory and UAV-Based Identification and Classification of Tomato Yellow Leaf Curl, Bacterial Spot, and Target Spot Diseases in Tomato Utilizing Hyperspectral Imaging and Machine Learning. Remote Sens 12:2732. 10.3390/rs12172732
Ahila Priyadharshini, R., Arivazhagan, S., Arun, M., Mirnalini, A. (2019) Maize leaf disease classification using deep convolutional neural networks. Neural Comput Appl 31:8887-8895. 10.1007/s00521-019-04228-3
Ahuja, S., Payak, M. (1982) Symptoms and signs of banded leaf and sheath blight of maize. Phytoparasitica 10:41-49. 10.1007/BF02981891
Akanksha, E., Sharma, N., Gulati, K. (2021) OPNN: Optimized probabilistic neural network based automatic detection of maize plant disease detection. ICICT. IEEE. pp.1322-1328. 10.1109/ICICT50816.2021.9358763
Alisaac, E., Behmann, J., Kuska, M. T., Dehne, H.-W., Mahlein, A.-K. (2018) Hyperspectral quantification of wheat resistance to Fusarium head blight: Comparison of two Fusarium species. Eur J Plant Pathol 152:869-884. 10.1007/s10658-018-1505-9
Anonymous (2021) World Food and Agriculture. Statistical Yearbook.
Aoki, T., O'Donnell, K., Homma, Y., Lattanzi, A. R. (2003) Sudden-death syndrome of soybean is caused by two morphologically and phylogenetically distinct species within the Fusarium solani species complex-F. virguliforme in North America and F. tucumaniae in South America. Mycologia 95:660-684. 10.1080/15572536.2004.1183307021148975
Arinichev, I. V., Polyanskikh, S. V., Volkova, G. V., Arinicheva, I. V. (2021) Rice Fungal Diseases Recognition Using Modern Computer Vision Techniques. Int J Fuzzy Log Intel 21:1-11. 10.5391/IJFIS.2021.21.1.1
Arnal Barbedo, J. G. (2013) Digital image processing techniques for detecting, quantifying and classifying plant diseases. SpringerPlus 2:660. 10.1186/2193-1801-2-66024349961PMC3863396
Ashwini, C., Sellam, V. (2022) Corn Disease Detection based on Deep Neural Network for Substantiating the Crop Yield. Appl Math 16:423-433. 10.18576/amis/160304
Asibi, A. E., Chai, Q., Coulter, J. A. (2019) Rice Blast: A Disease with Implications for Global Food Security. Agronomy 9. 10.3390/agronomy9080451
Awad, Y. M., Abdullah, A. A., Bayoumi, T. Y., Abd-Elsalam, K., Hassanien, A. E. (2014) Early Detection of Powdery Mildew Disease in Wheat (Triticum aestivum L.) Using Thermal Imaging Technique, in: Intelligent Systems'2014, eds. D. Filev, J. Jabłkowski, J. Kacprzyk, M. Krawczak, I. Popchev, L. Rutkowski, V. Sgurev, E. Sotirova, P. Szynkarczyk, S. Zadrozny: Springer International Publishing. pp.755-765. 10.1007/978-3-319-11310-4_66
Awaludin, N., Abdullah, J., Salam, F., Ramachandran, K., Yusof, N. A., Wasoh, H. (2020) Fluorescence-based immunoassay for the detection of Xanthomonas oryzae pv. oryzae in rice leaf. Anal biochem 610:113876. 10.1016/j.ab.2020.11387632750357
Bandara, A. Y., Weerasooriya, D. K., Bradley, C. A., Allen, T. W., Esker, P. D. (2020) Dissecting the economic impact of soybean diseases in the United States over two decades. PloS ONE 15:e0231141-e0231141. 10.1371/journal.pone.023114132240251PMC7117771
Barbedo, J. G. A., Godoy, C. V. (2015) Automatic classification of soybean diseases based on digital images of leaf symptoms, in: Embrapa Informática Agropecuária-Artigo em anais de congresso ALICE.
Barnwal, M. K., Kotasthane, A., Magculia, N., Mukherjee, P. K., Savary, S., Sharma, A. K. (2013) A review on crop losses, epidemiology and disease management of rice brown spot to identify research priorities and knowledge gaps. Eur J Plant Pathol 136:443-457. 10.1007/s10658-013-0195-6
Bauriegel, E., Giebel, A., Geyer, M., Schmidt, U., Herppich, W. (2011) Early detection of Fusarium infection in wheat using hyper-spectral imaging. Compute Electron Agric 75:304-312. 10.1016/j.compag.2010.12.006
Bernardo, R., Bourrier, M., Olivier, J. (1992) Generation means analysis of resistance to head smut in maize. Agronomie 12:303-306. 10.1051/agro:19920403
Boland, G., Melzer, M., Hopkin, A., Higgins, V., Nassuth, A. (2004) Climate change and plant diseases in Ontario. Can J Plant Pathol 26:335-350. 10.1080/07060660409507151
Bonifacio, D. J. M., Pascual, A. M. I. E., Caya, M. V. C., Fausto, J. C. (2020) Determination of Common Maize (Zea mays) Disease Detection using Gray-Level Segmentation and Edge-Detection Technique. HNICEM. IEEE. pp.1-6. 10.1109/HNICEM51456.2020.9399998
Boufleur, T. R., Ciampi‐Guillardi, M., Tikami, Í., Rogério, F., Thon, M. R., Sukno, S. A. (2021) Soybean anthracnose caused by Colletotrichum species: Current status and future prospects. Mol Plant Pathol 22:393-409. 10.1111/mpp.1303633609073PMC7938629
Bravo, C., Moshou, D., West, J., McCartney, A., Ramon, H. (2003) Early disease detection in wheat fields using spectral reflectance. Biosyst Eng 84:137-145. 10.1016/S1537-5110(02)00269-6
Bregaglio, S., Willocquet, L., Kersebaum, K. C., Ferrise, R., Stella, T., Ferreira, T. B. (2021) Comparing process-based wheat growth models in their simulation of yield losses caused by plant diseases. Field Crops Res 265:108108. 10.1016/j.fcr.2021.108108
Bressan, W. (2003) Biological control of maize seed pathogenic fungi by use of actinomycetes. BioControl 48:233-240. 10.1023/A:1022673226324
Browder, L., Eversmeyer, M. (1980) Sorting of Puccinia recondita: Triticum Infection-Type Data Sets. Phytopathology 70:666-670. 10.1094/Phyto-70-666
Buja, I., Sabella, E., Monteduro, A. G., Chiriacò, M. S., De Bellis, L., Luvisi, A., Maruccio, G. (2021) Advances in plant disease detection and monitoring: from traditional assays to in-field diagnostics. Sensors. 21(6). 2129. 10.3390/s2106212933803614PMC8003093
Cai, G., Schneider, R. (2008) Population structure of Cercospora kikuchii, the causal agent of Cercospora leaf blight and purple seed stain in soybean. Phytopathology 98:823-829. 10.1094/PHYTO-98-7-082318943259
Cao, X., Luo, Y., Zhou, Y., Fan, J., Xu, X., West, J. S., Duan, X., Cheng, D. (2015) Detection of Powdery Mildew in Two Winter Wheat Plant Densities and Prediction of Grain Yield Using Canopy Hyperspectral Reflectance. PLoS ONE 10:0121462. 10.1371/journal.pone.012146225815468PMC4376796
Castroagudín, V. L., Moreira, S. I., Pereira, D. A., Moreira, S. S., Brunner, P. C., Maciel, J. L. (2016) Pyricularia graminis-tritici, a new Pyricularia species causing wheat blast. Pers Mol Phylogeny Evol Fungi 37:199-216. 10.3767/003158516X69214928232765PMC5315288
Ceresini, P. C., Castroagudín, V. L., Rodrigues, F. Á., Rios, J. A., Eduardo Aucique-Pérez, C., Moreira, S. I. (2018) Wheat blast: past, present, and future. Annu Rev Phytopathol 56:427-456. 10.1146/annurev-phyto-080417-05003629975608
Chaudhary, P., Chaudhari, A. K., Cheeran, A., Godara, S. (2012) Color transform based approach for disease spot detection on plant leaf. Int J Comput Sci Telecom 3:65-70.
Chauhan, M. D. (2021) Detection of maize disease using random forest classification algorithm. Turk J Comput Math Educ 12:715-720.
Chen, F., Zhang, Y., Zhang, J., Liu, L., Wu, K. (2022) Rice False Smut Detection and Prescription Map Generation in a Complex Planting Environment, with Mixed Methods, Based on Near Earth Remote Sensing. Remote Sens 14:945. 10.3390/rs14040945
Chen, W.-L., Lin, Y.-B., Ng, F.-L., Liu, C.-Y., Lin, Y.-W. (2019) RiceTalk: Rice blast detection using Internet of Things and artificial intelligence technologies. IEEE Internet of Things J 7:1001-1010. 10.1109/JIOT.2019.2947624
Chung, C.-L., Huang, K.-J., Chen, S.-Y., Lai, M.-H., Chen, Y.-C., Kuo, Y.-F. (2016) Detecting Bakanae disease in rice seedlings by machine vision. Compute Electron Agric 121:404-411. 10.1016/j.compag.2016.01.008
Cottyn, B., Mew, T. (2004) Bacterial blight of rice. Encyclopedia of Plant and Crop Science. New York, Marcel Dekker. pp.79-83. 10.1081/E-EPCS-120010586
Cowger, C., Miranda, L., Griffey, C., Hall, M., Murphy, J., Maxwell, J. (2012) Wheat powdery mildew. Disease resistance in wheat. CABI, Oxfordshire. pp.84-119. 10.1079/9781845938185.0084
Cui, D., Zhang, Q., Li, M., Hartman, G. L., Zhao, Y. (2010) Image processing methods for quantitatively detecting soybean rust from multispectral images. Biosyst Eng 107:186-193. 10.1016/j.biosystemseng.2010.06.004
Dean, R., Van Kan, J. A. L., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D. (2012) The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Patho 13:414-430. 10.1111/j.1364-3703.2011.00783.x22471698PMC6638784
Del Fiore, A., Reverberi, M., Ricelli, A., Pinzari, F., Serranti, S., Fabbri, A. (2010) Early detection of toxigenic fungi on maize by hyperspectral imaging analysis. Int J Food Microbiol 144:64-71. 10.1016/j.ijfoodmicro.2010.08.00120869132
Deng, R., Tao, M., Xing, H., Yang, X., Liu, C., Liao, K. (2021) Automatic Diagnosis of Rice Diseases Using Deep Learning. Front Plant Sci 12. 10.3389/fpls.2021.70103834490004PMC8416767
Derbyshire, M. C., Newman, T. E., Khentry, Y., Owolabi Taiwo, A. (2022) The evolutionary and molecular features of the broad-host-range plant pathogen Sclerotinia sclerotiorum. Mol Plant Pathol. 10.1111/mpp.1322135411696PMC9276942
Deshapande, A. S., Giraddi, S. G., Karibasappa, K., Desai, S. D. (2019) "Fungal disease detection in maize leaves using haar wavelet features," in Information and Communication Technology for Intelligent Systems. Springer. pp.275-286. 10.1007/978-981-13-1742-2_27
Dey, U., Harlapur, S., Dhutraj, D., Suryawanshi, A., Badgujar, S., Jagtap, G., Kuldhar, D. P. (2012) Spatiotemporal yield loss assessment in corn due to common rust caused by Puccinia sorghi Schw. Afr J Agric Res 7:5265-5269. 10.5897/AJAR12.1103
Duveiller, E. (1994) Bacterial leaf streak or black chaff of cereals. EppO Bulletin 24:135-157. 10.1111/j.1365-2338.1994.tb01057.x
Editors, T. (1992) Diseases of Wheat Concepts and Management Methods.
Ennadifi, E., Laraba, S., Vincke, D., Mercatoris, B., Gosselin, B. (2020) Wheat Diseases Classification and Localization Using Convolutional Neural Networks and GradCAM Visualization (ISCV): IEEE. pp.1-5. 10.1109/ISCV49265.2020.9204258
Fattah, F. (1988) Effects of inoculation methods on the incidence of ear-cockle and 'tundu'on wheat under field conditions. Plant and soil 109:195-198. 10.1007/BF02202084
Gao, Z., Khot, L. R., Naidu, R.A., Zhang, Q. (2020) Early detection of grapevine leafroll disease in a red-berried wine grape cultivar using hyperspectral imaging. Compute Electron Agri 179:105807. 10.1016/j.compag.2020.105807
Gharge, S., Singh, P. (2016) Image processing for soybean disease classification and severity estimation. Springer. pp.493-500. 10.1007/978-81-322-2553-9_44
Ghosal, S., Blystone, D., Singh Asheesh, K., Ganapathysubramanian, B., Singh, A., Sarkar, S. (2018) An explainable deep machine vision framework for plant stress phenotyping. Proc Natl Acad Sci 115:4613-4618. 10.1073/pnas.171699911529666265PMC5939070
Ghyar, B. S., Birajdar, G. K. (2017) Computer vision based approach to detect rice leaf diseases using texture and color descriptors (ICICI): IEEE. pp.1074-1078. 10.1109/ICICI.2017.8365305
Gitz, V., Meybeck, A., Lipper, L., Young, C., Braatz, S. (2016) Climate change and food security: Risks and responses.
Godoy, C. V., Seixas, C. D. S., Soares, R. M., Marcelino-Guimarães, F. C., Meyer, M. C., Costamilan, L. M. (2016) Asian soybean rust in Brazil: past, present, and future. Pesqui Agropecu Bra 51:407-421. 10.1590/S0100-204X2016000500002
Gorman, Z., Christensen, S. A., Yan, Y., He, Y., Borrego, E., Kolomiets, M. V. (2020) Green leaf volatiles and jasmonic acid enhance susceptibility to anthracnose diseases caused by Colletotrichum graminicola in maize. Mol Plant Pathol 21:702-715. 10.1111/mpp.1292432105380PMC7170777
Gu, D., Andreev, K., Dupre, M. E. (2021) Major trends in population growth around the world. China CDC Wkly. 3(28):604-613. 10.46234/ccdcw2021.160. 10.46234/ccdcw2021.16034594946PMC8393076
Gui, J., Hao, L., Zhang, Q., Bao, X. (2015) A new method for soybean leaf disease detection based on modified salient regions. Int J Multimedia Ubiquitous eng 10:45-52. 10.14257/ijmue.2015.10.6.06
Guo, X., Li, Y., Fan, J., Li, L., Huang, F., Wang, W. (2012) Progress in the study of false smut disease in rice. J Agric Sci Technol A 2(11A):1211.
Ham, J. H., Melanson, R. A., Rush, M. C. (2011) Burkholderia glumae: next major pathogen of rice? Mol Plant Pathol 12:329-339. 10.1111/j.1364-3703.2010.00676.x21453428PMC6640401
Han, L., Haleem, M. S., Taylor, M. (2015) A novel computer vision-based approach to automatic detection and severity assessment of crop diseases. (SAI): IEEE. pp.638-644. 10.1109/SAI.2015.7237209
Hartman, G. L., Rupe, J. C., Sikora, E. J., Domier, L. L., Davis, J. A., Steffey, K. L. (2015) Compendium of soybean diseases and pests. Am Phytopath Society. 10.1094/9780890544754
Hasan, M. J., Mahbub, S., Alom, M. S., Nasim, M. A. (2019) Rice disease identification and classification by integrating support vector machine with deep convolutional neural network (ICASERT): IEEE. pp.1-6. 10.1109/ICASERT.2019.8934568
Hemmati, P., Zafari, D., Mahmoodi, S. B., Hashemi, M., Gholamhoseini, M., Dolatabadian, A. (2018) Histopathology of charcoal rot disease (Macrophomina phaseolina) in resistant and susceptible cultivars of soybean. Rhizosphere 7:27-34. 10.1016/j.rhisph.2018.06.009
Hong, J. K., Sung, C. H., Kim, D. K., Yun, H.-T., Jung, W., Kim, K. D. (2012) Differential effect of delayed planting on soybean cultivars varying in susceptibility to bacterial pustule and wildfire in Korea. Crop Protection 42:244-249. 10.1016/j.cropro.2012.07.014
Hossain, S. M., Tanjil, M., Morhsed, M., Ali, M. A. B., Islam, M. Z., Islam, M. (2020) Rice leaf diseases recognition using convolutional neural networks. Springer. pp.299-314. 10.1007/978-3-030-65390-3_23
Islam, T., Sah, M., Baral, S., Choudhury, R. R. (2018) A faster technique on rice disease detectionusing image processing of affected area in agro-field. (ICICCT). 10.1109/ICICCT.2018.847332230243917
Jadhav, S. B., Udup, V. R., Patil, S. B. (2019) Soybean leaf disease detection and severity measurement using multiclass SVM and KNN classifier. Int J Electr Compute Eng 9:4092. 10.11591/ijece.v9i5.pp4077-4091
Jadhav, S. B., Udupi, V. R., Patil, S. B. (2021) Identification of plant diseases using convolutional neural networks. Int J Inf Technol 13:2461-2470. 10.1007/s41870-020-00437-5
Jahan, N., Zhang, Z., Liu, Z., Friskop, A., Flores, P., Mathew, J. J. (2021) Using images from a handheld camera to detect wheat bacterial leaf streak disease severities. St. Joseph, MI: ASABE. 10.13031/aim.202100112
Jiang, F., Lu, Y., Chen, Y., Cai, D., Li, G. (2020) Image recognition of four rice leaf diseases based on deep learning and support vector machine. Compute Electron Agric 179:105824. 10.1016/j.compag.2020.105824
Johannes, A., Picon, A., Alvarez-Gila, A., Echazarra, J., Rodriguez-Vaamonde, S., Navajas, A. D. (2017) Automatic plant disease diagnosis using mobile capture devices, applied on a wheat use case. Compute Electron Agric 138:200-209. 10.1016/j.compag.2017.04.013
Kai, S., Zhikun, L., Hang, S., Chunhong, G. (2011) A research of maize disease image recognition of corn based on BP networks. 10.1109/ICMTMA.2011.6621617312
Kang, M., Zuber, M. (1988) Yellow- and white-endosperm effects on Stewart's wilt of maize. Phytopathology 78:909-911. 10.1094/Phyto-78-909
Karlekar, A., Seal, A. (2020) SoyNet: Soybean leaf diseases classification. Compute Electron Agric 172:105342. 10.1016/j.compag.2020.105342
Kazan, K., Gardiner, D. M., Manners, J. M. (2012) On the trail of a cereal killer: recent advances in Fusarium graminearum pathogenomics and host resistance. Mol Plant Pathol 13:399-413. 10.1111/j.1364-3703.2011.00762.x22098555PMC6638652
Kendler, S., Aharoni, R., Young, S., Sela, H., Kis-Papo, T., Fahima, T. (2022) Detection of crop diseases using enhanced variability imagery data and convolutional neural networks. Compute Electron Agric 193:106732. 10.1016/j.compag.2022.106732
Khalili, E., Kouchaki, S., Ramazi, S., Ghanati, F. (2020) Machine learning techniques for soybean charcoal rot disease prediction. Front in plant sci 11:2009. 10.3389/fpls.2020.59052933381132PMC7767839
Khan, M. S., Uandai, S. B., Srinivasan, H. (2019) Anthracnose disease diagnosis by image processing, support vector machine and correlation with pigments. J Plant Pathol 101:749-751. 10.1007/s42161-019-00268-9
Khirade, S. D., Patil, A. (2015). Plant disease detection using image processing. Paper presented at the 2015 International conference on computing communication control and automation. 10.1109/ICCUBEA.2015.153
Kim, H. C., Kim, K.-H., Song, K., Kim, J. Y., Lee, B.-M. (2020) Identification and validation of candidate genes conferring resistance to downy mildew in maize (Zea mays L.). Genes 11:191. 10.3390/genes1102019132053973PMC7074223
Kiruthika, U., Kanagasuba Raja, S., Jaichandran, R., Priyadharshini, C. (2019) Detection and classification of paddy crop disease using deep learning techniques. Int J Recent Technol Eng 8:4353-4359. 10.35940/ijrte.C5506.098319
Koch, E., Slusarenko, A. (1990) Arabidopsis is susceptible to infection by a downy mildew fungus. The Plant Cell 2:437-445. 10.1105/tpc.2.5.4372152169PMC159900
Kumar, D., Kukreja, V. (2021) N-CNN based transfer learning method for classification of powdery mildew wheat disease (ESCI): IEEE. pp.707-710. 10.1109/ESCI50559.2021.9396972
Li, N., Lin, B., Wang, H., Li, X., Yang, F., Ding, X. (2019) Natural variation in ZmFBL41 confers banded leaf and sheath blight resistance in maize. Nat Genet 51:1540-1548. 10.1038/s41588-019-0503-y31570888
Liang, W. J., Zhang, H., Zhang, G. F., Cao, H. X. (2019) Rice blast disease recognition using a deep convolutional neural network. Scientific Reports. 9(1):2869. 10.1038/s41598-019-38966-030814523PMC6393546
Lim, S. (1978). Disease severity gradient of soybean downy mildew from a small focus of infection. Phytopathology 68:1774-1778. 10.1094/Phyto-68-1774
Lin, F., Guo, S., Tan, C., Zhou, X., Zhang, D. (2020) Identification of Rice sheath blight through spectral responses using hyperspectral images. Sensors 20:6243. 10.3390/s2021624333147714PMC7663646
Liu, W., Liu, J., Triplett, L., Leach, J. E., Wang, G.-L. (2014) Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu Rev Phytopathol 52:213-241. 10.1146/annurev-phyto-102313-04592624906128
Lu, J., Hu, J., Zhao, G., Mei, F., Zhang, C. (2017a) An in-field automatic wheat disease diagnosis system. Compute Electron Agric 142:369-379. 10.1016/j.compag.2017.09.012
Lu, Y., Yi, S., Zeng, N., Liu, Y., Zhang, Y. (2017b) Identification of rice diseases using deep convolutional neural networks. Neurocomputing 267, 378-384. 10.1016/j.neucom.2017.06.023
Mendes, J., Pinho, T. M., Neves dos Santos, F., Sousa, J. J., Peres, E., Boaventura-Cunha, J., Cunha, M., Morais, R. (2020) Smartphone applications targeting precision agriculture practices?A systematic review. Agronomy. 10(6):855. 10.3390/agronomy10060855
Mew, T. W., Alvarez, A. M., Leach, J., Swings, J. (1993) Focus on bacterial blight of rice. Plant disease 77:5-12. 10.1094/PD-77-0005
Meyer, W., Sinclair, J., Khare, M. (1974) Factors affecting charcoal rot of soybean seedlings. Phytopathology 64:845-849. 10.1094/Phyto-64-845
Mian, M., Boerma, H., Phillips, D., Kenty, M., Shannon, G., Shipe, E., Soffes Blount, A. R., Weaver, D. B. (1998) Performance of frogeye leaf spot-resistant and-susceptible near-isolines of soybean. Plant disease 82:1017-1021. 10.1094/PDIS.1998.82.9.101730856828
Micheni, M. M., Kinyua, M., Too, B., Gakii, C. (2021) Maize Leaf Disease Detection using Convolutional Neural Networks. J. Appl. Comput. Sci. Math 15:15-20. 10.4316/JACSM.202101002
Minervini, M., Scharr, H., Tsaftaris, S. A. (2015) Image analysis: The new bottleneck in plant phenotyping [applications corner]. IEEE Signal Process Mag 32:126-131. 10.1109/MSP.2015.2405111
Mique Jr, E. L., Palaoag, T. D. (2018) Rice pest and disease detection using convolutional neural network. ACM pp.147-151. 10.1145/3209914.3209945
Mishra, S., Sachan, R., Rajpal, D. (2020) Deep convolutional neural network based detection system for real-time corn plant disease recognition. Procedia Comput Sci 167:2003-2010. 10.1016/j.procs.2020.03.236
Morco, R. C., Calanda, F. B., Bonilla, J. A., Corpuz, M. J. S., Avestro, J. E., Angeles, J. M. (2017) e-RICE: an expert system using rule-based algorithm to detect, diagnose, and prescribe control options for rice plant diseases in the Philippines. ResearchGate. pp.49-54. 10.1145/3168390.3168431
Mueller, D. S., Wise, K. A., Sisson, A. J., Allen, T. W., Bergstrom, G. C., Bosley, D. B., Bradley, C. A., Broders, K. D., Byamukama, E., Chilvers, M. I., Collins, A., Faske, T. R., Friskop, A. J., Heiniger, R. W., Hollier, C. A., Hooker, D. C., Isakeit, T., Jackson-Ziems, T. A., Jardine, D. J., Kelly, H. M., Kinzer, K., Koenning, S. R., Malvick, D. K., McMullen, M., Meyer, R. F., Paul, P. A., Robertson, A. E., Roth, G. W., Smith, D. L., Tande, C. A., Tenuta, A. U., Vincelli, P., Warner, F. (2016) Corn yield loss estimates due to diseases in the United States and Ontario, Canada from 2012 to 2015. Plant Health Prog 17:211-222. 10.1094/PHP-RS-16-0030
Muruganandam, P., Tandon, V., Baranidharan, B. (2022) Rice Crop Diseases and Pest Detection Using Edge Detection Techniques and Convolution Neural Network. Springer. pp.49-64. 10.1007/978-981-16-8225-4_5
Ngugi, L. C., MoatazAbelwahab, M. A.-Z. (2020) Recent advances in image processing techniques for automated leaf pest and disease recognition-A review. Inf Process Agric 8:27-51. 10.1016/j.inpa.2020.04.004
Nidhis, A., Pardhu, C. N. V., Reddy, K. C., Deepa, K. (2019) Cluster based paddy leaf disease detection, classification and diagnosis in crop health monitoring unit. Springer. pp.281-291. 10.1007/978-3-030-04061-1_29
Niu, X., Wang, M., Chen, X., Guo, S., Zhang, H., He, D. (2014) mage segmentation algorithm for disease detection of wheat leaves. IEEE. pp.270-273. 10.1109/ICAMechS.2014.6911663
Osunlaja, S. (1983) Effect of tillage on the control ofPhysoderma brown spot disease of maize in South-West Nigeria. Plant and Soil 72:73-76. 10.1007/BF02185095
Ou, S. H. (1985). Rice diseases. IRRI.
Panicker, S., Gangadharan, K. (1999) Controlling downy mildew of maize caused by Peronosclerospora sorghi by foliar sprays of phosphonic acid compounds. Crop Protection 18:115-118. 10.1016/S0261-2194(98)00101-X
Panigrahi, K. P., Sahoo, A. K., Das, H. (2020) A cnn approach for corn leaves disease detection to support digital agricultural system (ICOEI)(48184): IEEE. pp.678-683. 10.1109/ICOEI48184.2020.9142871
Parry, D., Jenkinson, P., McLeod, L. (1995) Fusarium ear blight (scab) in small grain cereals-a review. Plant pathology 44:207-238. 10.1111/j.1365-3059.1995.tb02773.x
Patidar, S., Pandey, A., Shirish, B. A., Sriram, A. (2020) Rice plant disease detection and classification using deep residual learning. Springer. pp.278-293. 10.1007/978-981-15-6315-7_23
Patil, B. V., Patil, P. S. (2021) Computational method for Cotton Plant disease detection of crop management using deep learning and internet of things platforms. Springer. pp.875-885 10.1007/978-981-15-5258-8_81
Pérez-Bueno, M. L., Pineda, M., Cabeza, F. M., Barón, M. (2016) Multicolor Fluorescence Imaging as a Candidate for Disease Detection in Plant Phenotyping. Front Plant Sci 7. 10.3389/fpls.2016.01790
Phadikar, S., Sil, J. (2008) Rice disease identification using pattern recognition techniques. IEEE. pp.420-423. 10.1109/ICCITECHN.2008.4803079
Picon, A., Alvarez-Gila, A., Seitz, M., Ortiz-Barredo, A., Echazarra, J., Johannes, A. (2019) Deep convolutional neural networks for mobile capture device-based crop disease classification in the wild. Compute Electron Agric 16:280-290. 10.1016/j.compag.2018.04.002
Pires, R. D. L., Gonçalves, D. N., Oruê, J. P. M., Kanashiro, W. E. S., Rodrigues Jr, J. F., Machado, B. B., Goncalves, W. N. (2016) Local descriptors for soybean disease recognition. Compute Electron Agric 125:48-55. 10.1016/j.compag.2016.04.032
Potnis, N., Timilsina, S., Strayer, A., Shantharaj, D., Barak, J. D., Paret, M. L., Vallad, G. E., Jones, J. B. (2015) Bacterial spot of tomato and pepper: diverse Xanthomonas species with a wide variety of virulence factors posing a worldwide challenge. Mol Plant Pathol 16:907-920. 10.1111/mpp.1224425649754PMC6638463
Prajapati, H. B., Shah, J. P., Dabhi, V. K. (2017) Detection and classification of rice plant diseases. Intel Decis Technol 11:357-373. 10.3233/IDT-170301
Ramesh, S., Vydeki, D. (2020) Recognition and classification of paddy leaf diseases using Optimized Deep Neural network with Jaya algorithm. Inf Process Agric 7:249-260. 10.1016/j.inpa.2019.09.002
Ray, D. K., Mueller, N. D., West, P. C., Foley, J. A. (2013) Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS ONE 8:e66428. 10.1371/journal.pone.006642823840465PMC3686737
Reddy, C., Laha, G., Prasad, M., Krishnaveni, D., Castilla, N., Nelson, A., Savary, S. (2011) Characterizing multiple linkages between individual diseases, crop health syndromes, germplasm deployment, and rice production situations in India. Field Crops Res 120:241-253. 10.1016/j.fcr.2010.10.005
Ritchie, H., Roser, M. (2013) Crop yields. Our World in Data.
Roy, K., Hershman, D., Rupe, J., Abney, T. (1997) Sudden death syndrome of soybean. Plant disease 81:1100-1111. 10.1094/PDIS.1997.81.10.110030861702
Sankar, P., Sharma, R. (2001) Management of charcoal rot of maize with Trichoderma viride. Scientia Agricola 55:1-7.
Sankaran, S., Maja, J. M., Buchanon, S., Ehsani, R. (2013) Huanglongbing (Citrus Greening) Detection Using Visible, Near Infrared and Thermal Imaging Techniques. Sensors 13. 10.3390/s13020211723389343PMC3649375
Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N., Nelson, A. (2019) The global burden of pathogens and pests on major food crops. Nat Ecol Evol 3:430-439. 10.1038/s41559-018-0793-y30718852
Schall, R., Nicholson, R., Warren, H. (1980) Influence of light on maize anthracnose in the greenhouse. Phytopathology 70:1023-1026. 10.1094/Phyto-70-1023
Scherff, R. (1973) Control of bacterial blight of soybean by. Bdellovibrio bacteriovorus 328:400-402. 10.1094/Phyto-63-400
Sethy, P. K., Barpanda, N. K., Rath, A. K., Behera, S. K. (2020) Deep feature based rice leaf disease identification using support vector machine. Compute Electron Agric 175:105527. 10.1016/j.compag.2020.105527
Shane, W., Baumer, J. (1987) Population dynamics of Pseudomonas syringae pv. syringae on spring wheat. Phytopathology 77:1399-1405. 10.1094/Phyto-77-1399
Sharma, M., Kumar, C. J., Deka, A. (2022) Early diagnosis of rice plant disease using machine learning techniques. Arch Phytopathol Pflanzenschutz 55:259-283. 10.1080/03235408.2021.2015866
Sharma, R., Das, S., Gourisaria, M. K., Rautaray, S. S., Pandey, M. (2020) A model for prediction of paddy crop disease using CNN. Springer. pp.533-543. 10.1007/978-981-15-2414-1_54
Shrivastava, S., Singh, S. K., Hooda, D. S. (2015) Color sensing and image processing-based automatic soybean plant foliar disease severity detection and estimation. Multimed Tools Appl 74:11467-11484. 10.1007/s11042-014-2239-0
Shrivastava, S., Singh, S. K., Hooda, D. S. (2017) Soybean plant foliar disease detection using image retrieval approaches. Multimed Tools Appl 76:26647-26674. 10.1007/s11042-016-4191-7
Shrivastava, V. K., Pradhan, M. K. (2021) Rice plant disease classification using color features: a machine learning paradigm. J Plant Pathol 103:17-26. 10.1007/s42161-020-00683-3
Shrivastava, V. K., Pradhan, M. K., Thakur, M. P. (2021) Application of pre-trained deep convolutional neural networks for rice plant disease classification. IEEE, pp.1023-1030. 10.1109/ICAIS50930.2021.9395813
Shrivastava, V. K., Pradhan, M. K., Minz, S., Thakur, M. P. (2019) Rice plant disease classification using transfer learning of deep convolution neural network. Int Arch of the PhotogrammRemote Sens Spat Inf Sci 42:W6. 10.5194/isprs-archives-XLII-3-W6-631-2019
Sibiya, M., Sumbwanyambe, M. (2019) A computational procedure for the recognition and classification of maize leaf diseases out of healthy leaves using convolutional neural networks. AgriEngineering 1:119-131. 10.3390/agriengineering1010009
Silva, O., Santos, H., Dalla Pria, M., May-De Mio, L. (2011) Potassium phosphite for control of downy mildew of soybean. Crop Protection 30:598-604. 10.1016/j.cropro.2011.02.015
Singh, A., Ganapathysubramanian, B., Singh, A. K., Sarkar, S. (2016) Machine Learning for High-Throughput Stress Phenotyping in Plants. Trends Plant Sci 21:110-124. 10.1016/j.tplants.2015.10.01526651918
Singh, D., Park, R., McIntosh, R. (2001) Postulation of leaf (brown) rust resistance genes in 70 wheat cultivars grown in the United Kingdom. Euphytica 120:205-218. 10.1023/A:1017578217829
Singh, V., Sharma, N., Singh, S. (2020) A review of imaging techniques for plant disease detection. Art Intel Agric 4:229-242. 10.1016/j.aiia.2020.10.002
Sinha, S., Prasad, M. (1977) Bacterial stalk rot of maize, its symptoms and host-range. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Zweite Naturwissenschaftliche Abteilung: Allgemeine, Landwirtschaftliche und Technische Mikrobiologie 132:81-88. 10.1016/S0044-4057(77)80037-3
Smart, M., Wicklow, D., Caldwell, R. (1990) Pathogenesis in Aspergillus ear rot of maize: light microscopy of fungal spread from wounds. Phytopathology 80:1287-1294. 10.1094/Phyto-80-1287
Srinivasachary, L. (2011) Resistance to rice sheath blight (Rhizoctonia solani Kuhn)[teleomorph: Thanatephorus cucumeris (AB Frank) Donk.] disease: current status and perspectives. Euphytica 178:1-22. 10.1007/s10681-010-0296-7
Su, W. H., Zhang, J., Yang, C., Page, R., Szinyei, T., Hirsch, C. D., Steffenson, B. J. (2020) Automatic evaluation of wheat resistance to fusarium head blight using dual mask-RCNN deep learning frameworks in computer vision. Remote sensing 13:26. 10.3390/rs13010026
Subedi, S. (2015) A review on important maize diseases and their management in Nepal. JMRD 1:28-52. 10.3126/jmrd.v1i1.14242
Sundin, G. W., Castiblanco, L. F., Yuan, X., Zeng, Q., Yang, C.-H. (2016) Bacterial disease management: challenges, experience, innovation and future prospects. Mol Plant Pathol 17:1506-1518. 10.1111/mpp.1243627238249PMC6638406
Tanaka, E., Ashizawa, T., Sonoda, R., Tanaka, C. (2008) Villosiclava virens gen. nov., comb. nov., the teleomorph of Ustilaginoidea virens, the causal agent of rice false smut. Mycotaxon 106:491-501.
Tian, Y., Zhao, C., Lu, S., Guo, X. (2011) Multiple classifier combination for recognition of wheat leaf diseases. Intel Autom Soft Compute 17:519-529. 10.1080/10798587.2011.10643166
Ullstrup, A. (1972) The impacts of the southern corn leaf blight epidemics of 1970-1971. Annu Rev phytopathol 10:37-50. 10.1146/
Ullstrup, A. J. (1953) Several ear rots of corn. Plant Diseases.
Upadhyay, S. K., Kumar, A. (2022) A novel approach for rice plant diseases classification with deep convolutional neural network. Int J Inf Technol 14:185-199. 10.1007/s41870-021-00817-5
Urashima, A., Igarashi, S., Kato, H. (1993) Host range, mating type, and fertility of Pyricularia grisea from wheat in Brazil. Plant Disease 77:1211-1216. 10.1094/PD-77-1211
Vasantha, S. V., Kiranmai, B., Krishna, S. R. (2021) Techniques for Rice Leaf Disease Detection using Machine LearningAlgorithms. Int. J. Eng. Res. Technol 9:162-166.
Vázquez-Arellano, M., Griepentrog, H. W., Reiser, D., Paraforos, D. S. (2016) 3-D Imaging Systems for Agricultural Applications-A Review. Sensors 16. 10.3390/s1605061827136560PMC4883309
Velu, M., Abimannan, S. (2022) Computational Approaches for Detection and Classification of Crop Diseases. Springer. pp.89-117. 10.1007/978-3-030-78284-9_5
Verma, T., Dubey, S. (2020) Impact of Color Spaces and Feature Sets in Automated Plant Diseases Classifier: A Comprehensive Review Based on Rice Plant Images. Arch Compute Methods Eng 27:1611-1632. 10.1007/s11831-019-09364-6
Waheed, A., Goyal, M., Gupta, D., Khanna, A., Hassanien, A. E., Pandey, H. M. (2020) An optimized dense convolutional neural network model for disease recognition and classification in corn leaf. Compute Electron Agric 175:105456. 10.1016/j.compag.2020.105456
Wallelign, S., Polceanu, M., Buche, C. (2018) Soybean plant disease identification using convolutional neural network. The thirty-first international flairs conference.
Ward, J. M., Stromberg, E. L., Nowell, D. C., Nutter Jr, F. W. (1999) Gray leaf spot: a disease of global importance in maize production. Plant disease 83:884-895. 10.1094/PDIS.1999.83.10.88430841068
Wilkie, J. P. (1973) Basal glume rot of wheat in New Zealand. New Zealand Journal of Agricultural Research. 16(1):155-160. 10.1080/00288233.1973.10421176
Williams, D., Nyvall, R. (1980). Leaf infection and yield losses caused by brown spot and bacterial blight diseases of soybean. Phytopathology 70:900. 10.1094/Phyto-70-900
Williams, P. J., Geladi, P., Britz, T. J., Manley, M. (2012) Investigation of fungal development in maize kernels using NIR hyperspectral imaging and multivariate data analysis. J Cereal Sci 55:272-278. 10.1016/j.jcs.2011.12.003
Xie, Y., Plett, D., Liu, H. (2022) Detecting Crown Rot Disease in Wheat in Controlled Environment Conditions Using Digital Color Imaging and Machine Learning. AgriEngineering 4:141-155. 10.3390/agriengineering4010010
Xiong, Y., Liang, L., Wang, L., She, J., Wu, M. (2020) Identification of cash crop diseases using automatic image segmentation algorithm and deep learning with expanded dataset. Compute Electron Agric 177:105712. 10.1016/j.compag.2020.105712
Xu, P., Wu, G., Guo, Y., Yang, H., Zhang, R. (2017) Automatic wheat leaf rust detection and grading diagnosis via embedded image processing system. Procedia Comput Sci 10:836-841. 10.1016/j.procs.2017.03.177
Yan, X., Talbot, N. J. (2016). Investigating the cell biology of plant infection by the rice blast fungus Magnaporthe oryzae. Curr Opin Microbiol 34:147-153. 10.1016/j.mib.2016.10.00127816794
Yao, Q., Zhang, C., Wang, Z., Yang, B., Tang, J. (2017) Design and experiment of agricultural diseases and pest image collection and diagnosis system with distributed and mobile device. Trans Chin Soc Agric Eng 33:184-191.
Yashitola, J., Krishnaveni, D., Reddy, A., Sonti, R. (1997) Genetic diversity within the population of Xanthomonas oryzae pv. oryzae in India. Phytopathology 87:760-765. 10.1094/PHYTO.1997.87.7.76018945099
Zhang, D., Daoyong, W., Shizhou, D., Huang, L., Haitao, Z., Liang, D. (2019) A rapidly diagnosis and application system of fusarium head blight based on smartphone. IEEE. pp.1-5. 10.1109/Agro-Geoinformatics.2019.8820529
Zhang, K., Wu, Q., Chen, Y. (2021) Detecting soybean leaf disease from synthetic image using multi-feature fusion faster R-CNN. Compute Electron Agric 183:106064. 10.1016/j.compag.2021.106064
Zhang, X., Qiao, Y., Meng, F., Fan, C., Zhang, M. (2018). Identification of maize leaf diseases using improved deep convolutional neural networks. Ieee Access 6:30370-30377. 10.1109/ACCESS.2018.2844405
  • Publisher :Agriculture and Life Sciences Research Institute, Kangwon National University
  • Publisher(Ko) :강원대학교 농업생명과학대학 농업생명과학연구원
  • Journal Title :Journal of Agricultural, Life and Environmental Sciences
  • Journal Title(Ko) :농업생명환경연구
  • Volume : 34
  • No :2
  • Pages :97-117
  • Received Date :2022. 05. 13
  • Revised Date :2022. 05. 30
  • Accepted Date : 2022. 06. 13