All Issue

2024 Vol.36, Issue 3 Preview Page

Research Article

30 September 2024. pp. 289-296
Abstract
References
1

Baek, Y. T., Sul, S. G., Cho, Y. Y. (2023) Estimation of days after transplanting using an artificial intelligence CNN (Convolutional Neural Network) model in a closed-type plant factory. Hortic Sci Technol 41:81-90. doi:10.7235/HORT.20230008.

10.7235/HORT.20230008
2

Chen, T., Guestrin, C. (2016) XGBoost: A scalable tree boosting system. In Proceedings of the Acm Sigkdd International Conference on Knowledge Discovery and Data Mining. pp.785-794. San Francisco, CA, USA. doi:10.1145/2939672.2939785.

10.1145/2939672.2939785
3

Friedman, J. H. (1999) Greedy function approximation: A gradient boosting machine. Ann Statist 29:1189-1232. dio:10.1214/aos/103203451.

10.1214/aos/1013203451
4

Gachoki, P., Muraya, M., Njoroge, G. (2022) Modelling plant growth based on gompertz, logistic curve, extreme gradient boosting and light gradient boosting models using high dimensional image derived maize (Zea mays L.) phenomic data. Am J Appl Math Stat 10:52-64. doi:10.12691/ajams-10-2-3

10.12691/ajams-10-2-3
5

Ge, J., Zhao, L., Yu, Z., Liu, H., Zhang, L., Gong, X., Sun, H. (2022) Prediction of greenhouse tomato crop evapotranspiration using XGBoost machine learning model. Plants 11:1923. doi:10.3390/plants11151923

10.3390/plants11151923
6

Kim, N. E., Han, H. S., Arulmozhi, E., Moon, B. E., Choi, Y. W., Kim, H. T. (2022) Prediction of greenhouse strawberry production using machine learning algorithm. J Bio-Env Con 31:1-7. doi:10.12791/KSBEC.2022.31.1.001

10.12791/KSBEC.2022.31.1.001
7

Lee, S. Y., Yang, H. J., Kim, M. Y., Kim, J. K., Son, A. Y., Hong, S. H. (2023) A study on prediction of tomato production using BI-LSTM for smart farm utilization. J- KICS 48:457-468. doi:10.7840/kics.2023.48.4.457

10.7840/kics.2023.48.4.457
8

Mariadass, D. A. -L., Moung, E. G., Sufian, M. M., Farzamnia, A. (2022) Extreme gradient boosting (XGBoost) regressor and shapley additive explanation for crop yield prediction in agriculture. 2022 12th International Conference on Computer and Knowledge Engineering (ICCKE). pp.219-224. Mashhad, Islamic Republic of Iran. doi:10.1109/ICCKE57176.2022.9960069

10.1109/ICCKE57176.2022.9960069
9

M'hamdi, O., Takács, S., Palotás, G., Ilahy, R., Helyes, L., Pék, Z. A. (2024) Comparative analysis of XGBoost and neural network models for predicting some tomato fruit quality traits from environmental and meteorological data. Plants 13:746. doi:10.3390/plants13050746

10.3390/plants13050746
10

Moon, T. W., Park, J. Y., Son, J. E. (2020) Estimation of sweet pepper crop fresh weight with convolutional neural network. Protected Hort Plant Fac 29:381-387. doi:10.12791/KSBEC.2020.29.4.381

10.12791/KSBEC.2020.29.4.381
11

Raddekar, A., Chikmurge, D., Subhedar, M. (2023) Prediction of crop yield with feature dimension reduction method using regression models. 7th Intenational Conference On Computing, Communication, Control And Automation (ICCUBEA). pp.1-6. Pune, India. doi: 10.1109/ICCUBEA58933.2023.10392189

10.1109/ICCUBEA58933.2023.10392189
12

Ravi, R., Baranidharan, B. (2020) Crop yield prediction using XGBoost algorithm. Int J Recent Technol Eng 8:3516-3520. doi:10.35940/ijrte.D9547.018520

10.35940/ijrte.D9547.018520
13

Zhang, Y., Wu, M., Li, J., Yang, S., Zheng, L., Liu, X., Wang, M. (2022) Automatic non-destructive multiple lettuce traits prediction based on DeepLabV3+. J Food Meas Charact 17:636-652. doi:10.1007/s11694-022-01660-3

10.1007/s11694-022-01660-3
Information
  • Publisher :Agriculture and Life Sciences Research Institute, Kangwon National University
  • Publisher(Ko) :강원대학교 농업생명과학대학 농업생명과학연구원
  • Journal Title :Journal of Agricultural, Life and Environmental Sciences
  • Journal Title(Ko) :농업생명환경연구
  • Volume : 36
  • No :3
  • Pages :289-296
  • Received Date : 2024-07-01
  • Revised Date : 2024-08-21
  • Accepted Date : 2024-09-19