Research Article
Baek, Y. T., Sul, S. G., Cho, Y. Y. (2023) Estimation of days after transplanting using an artificial intelligence CNN (Convolutional Neural Network) model in a closed-type plant factory. Hortic Sci Technol 41:81-90. doi:10.7235/HORT.20230008.
10.7235/HORT.20230008Chen, T., Guestrin, C. (2016) XGBoost: A scalable tree boosting system. In Proceedings of the Acm Sigkdd International Conference on Knowledge Discovery and Data Mining. pp.785-794. San Francisco, CA, USA. doi:10.1145/2939672.2939785.
10.1145/2939672.2939785Friedman, J. H. (1999) Greedy function approximation: A gradient boosting machine. Ann Statist 29:1189-1232. dio:10.1214/aos/103203451.
10.1214/aos/1013203451Gachoki, P., Muraya, M., Njoroge, G. (2022) Modelling plant growth based on gompertz, logistic curve, extreme gradient boosting and light gradient boosting models using high dimensional image derived maize (Zea mays L.) phenomic data. Am J Appl Math Stat 10:52-64. doi:10.12691/ajams-10-2-3
10.12691/ajams-10-2-3Ge, J., Zhao, L., Yu, Z., Liu, H., Zhang, L., Gong, X., Sun, H. (2022) Prediction of greenhouse tomato crop evapotranspiration using XGBoost machine learning model. Plants 11:1923. doi:10.3390/plants11151923
10.3390/plants11151923Kim, N. E., Han, H. S., Arulmozhi, E., Moon, B. E., Choi, Y. W., Kim, H. T. (2022) Prediction of greenhouse strawberry production using machine learning algorithm. J Bio-Env Con 31:1-7. doi:10.12791/KSBEC.2022.31.1.001
10.12791/KSBEC.2022.31.1.001Lee, S. Y., Yang, H. J., Kim, M. Y., Kim, J. K., Son, A. Y., Hong, S. H. (2023) A study on prediction of tomato production using BI-LSTM for smart farm utilization. J- KICS 48:457-468. doi:10.7840/kics.2023.48.4.457
10.7840/kics.2023.48.4.457Mariadass, D. A. -L., Moung, E. G., Sufian, M. M., Farzamnia, A. (2022) Extreme gradient boosting (XGBoost) regressor and shapley additive explanation for crop yield prediction in agriculture. 2022 12th International Conference on Computer and Knowledge Engineering (ICCKE). pp.219-224. Mashhad, Islamic Republic of Iran. doi:10.1109/ICCKE57176.2022.9960069
10.1109/ICCKE57176.2022.9960069M'hamdi, O., Takács, S., Palotás, G., Ilahy, R., Helyes, L., Pék, Z. A. (2024) Comparative analysis of XGBoost and neural network models for predicting some tomato fruit quality traits from environmental and meteorological data. Plants 13:746. doi:10.3390/plants13050746
10.3390/plants13050746Moon, T. W., Park, J. Y., Son, J. E. (2020) Estimation of sweet pepper crop fresh weight with convolutional neural network. Protected Hort Plant Fac 29:381-387. doi:10.12791/KSBEC.2020.29.4.381
10.12791/KSBEC.2020.29.4.381Raddekar, A., Chikmurge, D., Subhedar, M. (2023) Prediction of crop yield with feature dimension reduction method using regression models. 7th Intenational Conference On Computing, Communication, Control And Automation (ICCUBEA). pp.1-6. Pune, India. doi: 10.1109/ICCUBEA58933.2023.10392189
10.1109/ICCUBEA58933.2023.10392189- Publisher :Agriculture and Life Sciences Research Institute, Kangwon National University
- Publisher(Ko) :강원대학교 농업생명과학대학 농업생명과학연구원
- Journal Title :Journal of Agricultural, Life and Environmental Sciences
- Journal Title(Ko) :농업생명환경연구
- Volume : 36
- No :3
- Pages :289-296
- Received Date : 2024-07-01
- Revised Date : 2024-08-21
- Accepted Date : 2024-09-19
- DOI :https://doi.org/10.22698/jales.20240023