All Issue

2022 Vol.34, Issue 3 Preview Page

Research Article

31 December 2022. pp. 345-353
Abstract
References
1
Asteris, P. G., Rizal, F. I. M., Koopialipoor, M., Roussis, P. C., Ferentinou, M., Armaghani, D. J., Gordan, B. (2022) Slope stability classification under seismic conditions using several tree-based intelligent techniques. Applied Sciences 12:1753. 10.3390/app12031753
2
Bui, X. N., Nguyen, H., Choi, Y., Nguyen-Thoi, T., Zhou, J., Dou, J. (2020) Prediction of slope failure in open-pit mines using a novel hybrid artificial intelligence model based on decision tree and evolution algorithm. Scientific reports 10:1-17. 10.1038/s41598-020-66904-y32555284PMC7303121
3
Chen, Z., Yeo, C. K., Lee, B. S., Lau, C. T. (2018) Autoencoder-based network anomaly detection. In 2018 Wireless telecommunications symposium (WTS) (pp. 1-5). IEEE. 10.1109/WTS.2018.8363930
4
Cheng, Z., Wang, S., Zhang, P., Wang, S., Liu, X., Zhu, E. (2021) Improved autoencoder for unsupervised anomaly detection. International Journal of Intelligent Systems 36:7103-7125. 10.1002/int.22582
5
Cozzolino, D., Verdoliva, L. (2016) Single-image splicing localization through autoencoder-based anomaly detection. In 2016 IEEE international workshop on information forensics and security (WIFS) (pp. 1-6). IEEE. 10.1109/WIFS.2016.782392126901861
6
Deng, L. (2014) A tutorial survey of architectures, algorithms, and applications for deep learning. APSIPA transactions on Signal and Information Processing, 3. 10.1017/atsip.2013.9
7
Federico, A., Popescu, M., Elia, G., Fidelibus, C., Internò, G., Murianni, A. (2012) Prediction of time to slope failure: a general framework. Environmental Earth Sciences 66:245-256. 10.1007/s12665-011-1231-5
8
Gerych, W., Agu, E., Rundensteiner, E. (2019) Classifying depression in imbalanced datasets using an autoencoder- based anomaly detection approach. In 2019 IEEE 13th International Conference on Semantic Computing (ICSC) (pp. 124-127). IEEE. 10.1109/ICOSC.2019.8665535
9
Jin, J. H., Lim, H. T., Bibek, T., Chang, S. H., Kim, Y. S. (2018) Slope behavior analysis using the measurement of GFRP underground displacement. Journal of the Korean Geosynthetics Society 17:11-19.
10
KFS (Korea Forest Service) (2021) Comprehensive measures for the prevention of landslides. Landslide prevention department, 8-38.
11
Liu, P., Sun, X., Han, Y., He, Z., Zhang, W., Wu, C. (2022) Arrhythmia classification of LSTM autoencoder based on time series anomaly detection. Biomedical Signal Processing and Control 71:103228. 10.1016/j.bspc.2021.103228
12
Maxwell, A. E., Sharma, M., Kite, J. S., Donaldson, K. A., Maynard, S. M., Malay, C. M. (2021) Assessing the generalization of machine learning-based slope failure prediction to new geographic Extents. ISPRS International Journal of Geo-Information 10:293. 10.3390/ijgi10050293
13
MOIS (Ministry of the Interior and Safety) (2020) 2020 Disaster announcement. Ministry of the Interior and Safety of recovery support department, 18-21.
14
Moon, I. (2013) Accessibility and response of super typhoon in jeju area. Jeju Future Forum.
15
Oakland, J. S. (2007) Statistical process control. Routledge. 10.4324/9780080551739
16
Park, M., Yoo, B., Baek, Y., Hwang, Y. (2016) Integral method of stability analysis and maintenance of slope. Journal of the Korean GEO-environmental Society 17:27-35. 10.14481/jkges.2016.17.3.27
17
Qi, C., Tang, X. (2018) Slope stability prediction using integrated metaheuristic and machine learning approaches: a comparative study. Computers and Industrial Engineering 118:112-122. 10.1016/j.cie.2018.02.028
18
Ranjan, C. (2019) LSTM Autoencoder for extreme rare event classification in keras. Towards Data Science.
19
Roelofs, C. M., Lutz, M. A., Faulstich, S., Vogt, S. (2021) Autoencoder-based anomaly root cause analysis for wind turbines. Energy and AI 4:100065. 10.1016/j.egyai.2021.100065
20
Sakellariou, M. G., Ferentinou, M. D. (2005) A study of slope stability prediction using neural networks. Geotechnical and Geological Engineering 23:419-445. 10.1007/s10706-004-8680-5
21
Samui, P. (2008) Slope stability analysis: a support vector machine approach. Environmental Geology 56:255-267. 10.1007/s00254-007-1161-4
22
Upasna, C. K., Moe, M. (2018a) Machine learning: a novel approach to predicting slope instabilities. International Journal of Geophysics, 2018. 10.1155/2018/4861254
23
Upasna, C. K., Moe, M. (2018b) New approaches to monitoring, analyzing and predicting slope instabilities. Journal of Geology and Mining Research 10:1-14. 10.5897/JGMR2017.0272
24
Xu, X., Yoneda, M. (2019) Multitask air-quality prediction based on LSTM-autoencoder model. IEEE transactions on cybernetics 51:2577-2586. 10.1109/TCYB.2019.294599931689226
25
Yoo, B. (2006) A study on the analysis method for real-time slope collapse risk warning system. Ph.D. Thesis, Kumoh National Institute of Technology, Gumi, Korea.
26
Yu, Y., Si, X., Hu, C., Zhang, J. (2019) A review of recurrent neural networks: LSTM cells and network architectures. Neural computation 31:1235-1270. 10.1162/neco_a_0119931113301
Information
  • Publisher :Agriculture and Life Sciences Research Institute, Kangwon National University
  • Publisher(Ko) :강원대학교 농업생명과학대학 농업생명과학연구원
  • Journal Title :Journal of Agricultural, Life and Environmental Sciences
  • Journal Title(Ko) :농업생명환경연구
  • Volume : 34
  • No :3
  • Pages :345-353
  • Received Date : 2022-11-23
  • Revised Date : 2022-11-25
  • Accepted Date : 2022-11-25